

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

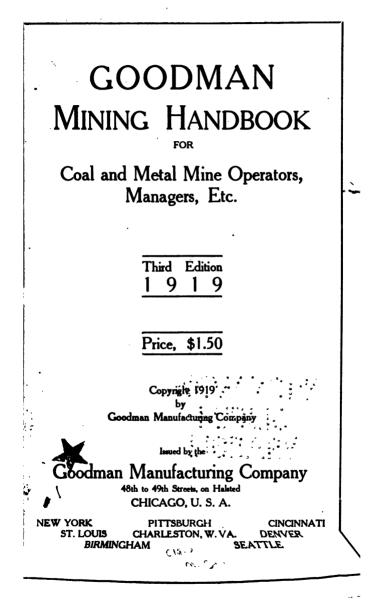
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

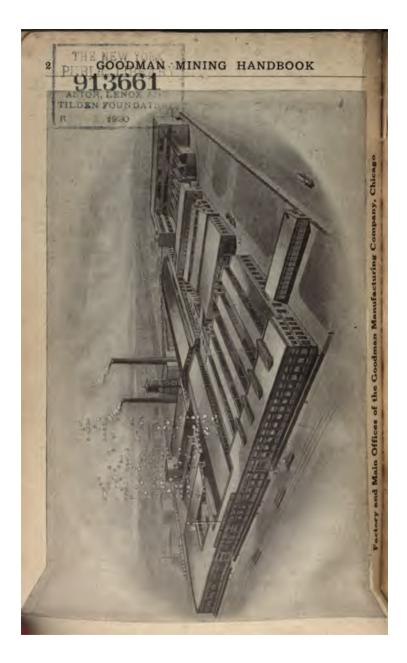
We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/





2 ,

. • . .

PRESENTATION

PUBLICATION of this third edition of the Goodman Mining Handbook has been long deferred because of war conditions — the shortage of paper, the scarcity of leather, etc.—which made it wholly improper to divert from more important uses the materials which go to make up a volume of this character.

The book is now offered as a pocket or desk reference aid to the mining man who wants short cuts to desired results in ordinary calculations, and handy data to relieve his mind of the burden of attempting to hold in memory the important formulas and practices of his daily work.

The following pages contain some new matter, necessary revision of statistical data, and extension of the Goodman product summary. The Goodman Manufacturing plant has received several successive additions until now it appears as shown by the new view on opposite page.

As heretofore, much of the material in the present book has been arranged from data of the Goodman Manufacturing Co., and its accuracy is based on long experience. Many of the tables and much of the general information have been calculated and arranged expressly for this handbook; other matter has been derived from standard sources of recognized authority and reliability.

CONTENTS

TABLES AND DATA

Wires and Cables 5- 16
Rail Bonding 17-19
Transmission Line Calculations 20- 24
Transformation Tables for Various Units 25-27
Mine Haulage by Electric Locomotives 28-39
Mine Tracks 40- 53
Mine Hoisting 54- 61
Mine Ventilation
Compressed Air and Steam 70- 71
Piping, Tubes and Tanks 72-77
Water Pressure and Measurement
Pumps
Mechanical Power Transmission
Weights of Materials
Concrete Mixtures
Wood Posts and Beams-Board Measure104-106
Boiling and Melting Temperatures
Coal and Coke Production and Statistics108-115
Copper and Iron Production
Fractions, Squares, Cubes and Roots122-129
Circumferences and Areas of Circles
Interest, Depreciation and Discounts132-137
Stocks and Bonds
Postal Rates and Parcel Post Maps142-147
Population of the United States
Chronology of the War150-152
MINE EQUIPMENT
Coal Cutting Machines154-169
Coal Loading Equipment170-173
Gathering Locomotives 174-183
Traction Haulage Locomotives

.

Resistance of **Copper and Aluminum Wire**

at 75° Fahrenheit

Conductivity: Copper 98%; Aluminum 62%.

	Condu	Cuvity	. <u>oppe</u>	1 90 %;	Aiuiiiiiu	III 0270.		
			Copper			Aluminum		
Wire No.,	Area, Circu-		s Lost Impere	Feet	Volts per Ai		Feet	L
B.&S. Gauge	lar Mils	Per 1000 Feet	Per Mile	per Ohm	Per 1000 Feet	Per Mile	per Ohm	
0000	211600	0.049	0.259	20393	0.078	0.410	12888.9	٤.
	167805	.062		16172	.098		10236.9	Ÿ
	133079	.078	.412	12825	.123	.652		1
Õ	105592	.098	.519	10176	.155			al ann fa fa thatait
-								ŧ
1	83695	.124	.655		.196			1
2	66373	.156			.247	1.306		1
3	52634	.197	1.04	5072.5	.311	1.646		
4	41743	.249	1.31	4022.9	.393	2.075	3210.9	
-	22102	214	1.44	2100.2	406	0.000	2010 4	
5	33102 26251	.314 .395	1.66 2.09	3190.2 2529.9	.496			i
6 7	20251	.393	2.63	2529.9	.625 .789	3.305 4.173		
8	16510	.629	3.32	1591.1	.789			
. 0	,10310	.029	3.52	1391.1	.994	3.233	1007.2	
9	13094	.792	4.18	1262.0	1.253	6.627	798.8	
10	10382	1.00	5.28	1000.5	1.580			- 1
11	8234	1.26	6.65	793.6	1.990		502.32	
12	6530	1.59	8.39	629.3	2.513	13.29	398.35	
13	5178	2.00	10.58	499.1	3.167	16.75	315.90	
14	4107	2.53	13.34	395.8	3.992	21.10	250.54	
15	3257	3.19	16.82	313.9	5.035		198.68	1
16	2583	4.02	21.21	248.9	6.345	33.55	157.55	1
17	2048	5.07	26.75	197.4	8.013	42.30	124.95	
18	1624	6.39	33.73	156.5	10.11	53.40	99.09	- 1
19	1288	8.06	42.53	124.1	12.73	67.25	78.58	1
2 0	1021	10.16	53.64	98.44	16.07	85.06	62.31	
								- 1
21		12.81	67.63	78.07	20.25	107.1	49.42	
22 23		16.15	85.27	61.92	25.53	134.9	39.20	- 1
23		20.37	107.5	49.10		1103	31.08	<u>ر</u> ر
24	404.0	25.68	135.6	38.94	¥ 40.65	214.8	1 24.6	
25	320.4	32.38	171.0	30.9	88 51.3	23 271		9.55 15. 50
26	254.1	40.84	215.6	24	.49\ 64	.65 ' 34	1.8 1	

5

Properties of

.

Stranded Copper and Aluminum Cable at 75° Fahrenheit

Conductivity: Copper 98%; Aluminum 62%

			Copper			Aluminur	n
Wire No.,	Area, Circu-	Weigh Cable	t of Bare , Pounds	Volts Lost per	Weight Cable,	of Bare Pounds	Volts Lost per
B.&S. Gauge	lar Mils	Per 1000 Feet	Per Mile	Ampere per 1000 Feet	Per 1000 Feet	Per Mile	Ampere per 1000 Feet
	1000000	2050		0.0105	000	4050	0.0144
	1000000		16104	0.0105		4858	0.0166
	950000 900000		15299 14494	.0111	874 828	4617 4374	.0175
	850000	2745	14494	.0117 .0124	828 782	4374 4131	.0185
	830000	2393	13088	.0124	182	4151	.0190
	800000	2440	12883	.0131	736	3888	.0207
	750000		12078	.0140	690	3645	.0221
	700000		11273	.0150	644	3402	.0237
	650000	1983	10468	.0162	598	3159	.0256
	600000	1830	9662	.0175	552	2916	.0276
	550000	1678	8857	.0191	506	2673	.0302
	500000	1525	8052	.0210	460	2430	.0332
	450000	1373	7247	.0234	414	2187	.0370
	400000	4000	(110	00/0	240	1011	0.14
	400000	1220	6442	.0263	368	1944	.0416
	350000	1068	5636	.0300	322	1701	.0474
	300000	915	4831	.0350	276	1458 1215	.0553
	250000	762	4026	.0420	230	1215	.0664
0000	211600	645	3405	.0497	194.7	1028	.0785
000	167805	513	2709	.0625	154.4	816	.0987
ŎŎ	133079	406	2144	.0789	122.4	647	.1247
Õ	105592	322	1700	.0995	97.1	513	.1573
-							
1	83695	255	1346	.1258	77.0	407 ·	. 1988
2	66373	203	1072	.1579	61.0	323	.2495
2 3 4	52634	160	845	.2004	48.5	256	.3168
4/	41743	127	671	.2525	38.5	203	.3990
5/	33102	103	544	.3112	30.2	101	.4920
	26251	81	544 428	.3112		1	
_/		•	420	.390	ງ "ະ		\

Weight of

Bare Copper Wire

Wire	Diam-	Area,		of Bare Pounds
No., B. & S. Gauge	eter, Inches	Circular Mils	Per 1000 Feet	Per Mile
0000	0.460	211600	640.7	3383
000	.410	167805	508.1	2683
00	.365	133079	403.0	2128
0	.325	105592	319.7	1688
1	.289	83695	253.4	1338
2	.258	66373	201.0	1061
3	.229	52634	159.4	841.5
4	.204	41743	126.4	667.4
5	.182	33102	100.2	529.2
6	.162	26251	79.5	419.7
7	.144	20817	63.0	332.8
8	.129	16510	50.0	264.0
9	. 114	13094	39.7	209.4
10	. 102	10382	31.4	166.0
11	. 091	8234	24.9	131.7
12	. 081	6530	19.8	104.4
13	.072	5178	15.7	82.8
14	.064	4107	12.4	65.7
15	.057	3257	9.86	52.07
16	.051	2583	7.82	41.29
17	.045	2048	6.20	32.75
18	.040	1624	4.92	25.97
19	.036	1288	3.90	20.59
20	.032	1021	3.09	16.33
21	.029	810.1	2.45	12.95
22	.025	642.5	1.95	10.27
23	.023	509.5	1.54	8.15
24	.020	404.0	1.22	6.46
25	.018	320.4	רפ.	5.12
26	.016	254.1	רד.	

Breaking Strength of

Copper and Aluminum Wire and Cable

Ultimate strength of Annealed Copper taken at 34,000 pounds per Ultimate strength of Annealed Copper taken at 34,000 pounds per square inch. Ultimate strength of Hard Drawn Copper taken at 60,000 pounds per square inch, except: 50,000 pounds for Nos. 0000,000 and 00; 55,000 pounds for No. 0; 57,000 pounds for No. 1. Ultimate strength of Aluminum taken at 26,000 pounds per square inch. Table gives actual breaking strains, to which a suitable safety factor must be applied to secure proper working strengths.

.

Wire	A	B	reaking S	Strain, Pour	nds
No., B. & S.	Area, Circular Mils	Copper,	Solid	Alun	ninum
Gauge	MIIS	Annealed	Hard Drawn	Solid	Stranded
	1000000			20420	32280
	900000			18380	29050
	800000			16340	25820
	700000			14300	22590
	600000		. 	12250	19370
	500000			10210	16140
	400000			8170	12910
	300000	.		6130	9680
	250000			5110	8070
0000	211600	5650	8310	4320	6830
000	167805	4475	6580	3430	5420
00	133079	3550	5226	2720	4290
0	105592	2800	4558	2150	3410
1	83695	2225	3746	1710	2700
2 3 4	66373	1775	3127	1355	2143
3	52634	1400	2480	1075	1700
4	41743	1115	1967	852	1350
5	33102	885	1519	657	1070
5 6 7 8	26251	700	1237	536	850
7	20817	550	980	426	
8	16510	440	778	337	•••••
9	13094	350	617	267	
10	10382	275	489	212	
11	8234	220	388	167	
12	653 0	175	307	133	{······
13 14	5178	135	244	105	\
<u> </u>	4107	110	193	84	<u>. </u>

Comparison of Wire Gauges Diameters in Inches for Various Gauge Systems

Brown & Whit- English Birming- Birming-

Gauge No.	Sharpe, Ameri- can Std.	worth's, English Stan- dard	Imperial Legal Stan- dard	ham or Stubbs'	ham for Iron Sheets	Lanca- shire	Warring- ton or Rylands
0000 000 00 00	.460 .409 .364 .324	· · · · · · · · · · · ·	.400 .372 .348 .324	.454 .425 .380 .340	· · · · · · · · · · · · · · · · · · ·	 	.406 .375 .343 .326
1	.289	. 001	. 300	. 300	.312	. 227	.300
2	.257	. 002	. 276 -	. 284	.281	. 219	.274
3	.229	. 003	. 252	. 259	.250	. 209	.250
4	.204	. 004	. 232	. 238	.234	. 204	.229
5	. 181	.005	. 212	. 220	. 218	. 201	. 209
6	. 162	.006	. 192	. 203	. 203	. 198	. 191
7	. 144	.007	. 176	. 180	. 187	. 195	. 174
8	. 128	.008	. 160	. 165	. 171	. 192	. 159
9	.114	.009	. 144	. 148	. 156	. 191	.146
10	.101	.010	. 128	. 134	. 140	. 190	.133
11	.090	.011	. 116	. 120	. 125	. 189	.117
12	.080	.012	. 104	. 109	. 112	. 185	.100
13	.071	.013	. 092	. 095	. 100	. 180	. 090
14	.064	.014	. 080	. 083	. 087	. 177	. 079
15	.057	.015	. 072	. 072	. 075	. 175	. 069
16	.050	.016	. 064	. 065	. 062	. 174	. 062
17	.045	.017	.056	. 058	.056	. 169	.053
18	.040	.018	.048	. 049	.050	. 167	.047
19	.035	.019	.040	. 042	.043	. 164	.041
20	.031	.020	.036	. 035	.037	. 160	.036
21 22 23 24	.028 .025 .022 .020	.022	.032 .028 .024 .022	.032 .028 .025 .022	.034 .031 .028 .025	.157 .152 .150 .148	.031 .028
	.017 . .015 .014 .	. 026	. 020 . 018 . 016	. 020 . 018 . 016	.023 .021 .02		

Diameter and Weight of Standard Weatherproof Insulated Copper Wire and Cable

Solid Stranded Wire No., B. & S. Gauge Area, Circular Mils Weight, Weight, Diameter. Diameter. Pounds per 1000 Feet Pounds per 1000 Feet Inches Inches 1000000 1.37 3456 900000 1.31 3127 1.24 2799 800000 700000 1.18 2471 1.11 600000 2093 500000 1.03 1765 400000 .94 1436 .85 300000 1083 723 745 0000 211600 0.61 .71 000 167805 . 56 587 .65 604 . 52 467 .60 482 00 133079 0 .47 377 .56 388 105592 1 83695 .41 294 .47 303 2 66373 .37 239 .42 246 3 52634 .35 185 .38 190 .35 4 41743 .32 151 155 5 33102 .30 122 .32 126 6 26251 100 .31 103 .28

Double Braid

Diameter and Weight of Standard Weatherproof Insulated Copper Wire and Cable

		mpie r			
		So	lid	Stra	nded
Wire No., B. & S. Gauge	Area, Circular Mils	Diameter, Inches	Weight, Pounds per 1000 Feet	Diameter, Inches	Weight, Pounds per 1000 Feet
	1000000			1.45	3674
	900000			1.45	3332
	800000			1.39	2992
	700000			1.33	2992 2650
	600000			1.19	2235
	500000			1.11	1894
	400000			1.02	1553
	300000			.93	1174
0000	211600	0.66	7 67	.79	800
000	167805	.60	629	.73	653
00	133079	. 55	502	. 6 6	522
0	105592	.51	⁴⁰⁷ .	.61	424
1	83695	.45	316	. 52	328
2	66373	.40	260	.44	270
3	52634	.37	208	.41	219
4	41743	.35	164	.38	170
5	33102	.32	130	.35	146
6	26251	.30	\ 112	.33	\cdot / r

Triple Braid

Diameter and Weight of Rubber Insulated Copper Wire and Cable

National Electric Code Standard. 0 to 600 Volts Double Braid

	<u></u>	So	lid	Stra	nded
Wire No., B. & S. Gauge	Area, Circular Mils	Diameter, Inches	Weight, Pounds per 1000 Feet	Diameter, Inches	Weight, Pounds per 1000 Feet
	1000000 900000 800000 700000			1.46 1.40 1.33 1.27	3553 3223 2891 2557
	600000 500000 400000 300000	· · · · · · · · · · · · · · · · · · ·		1.19 1.09 1.00 .90	2220 1842 1514 1173
0000 000 00 0	211600 167805 133079 105592	0.70 .65 .61 .57	793 646 528 439	.77 .71 .66 .61	833 675 556 457
, ¹ 2 3 4	83695 66373 52634 41743	.53 .45 .42 .39	363 276 228 190	.57 .50 .45 .42	377 293 238 198
- 5 - 7 8	33102 26251 20817 16510	.36 .34 .30 .27	154 130 105 82.1	.40 .36 .32 .29	166 136 108 85.5
9 10 11 12	13094 10382 8234 <i>653</i> 0	.26 .25 .24 .23	68.4 58.1 50.0 43.1	27 .26 .25 .24	70.0 60.6 52.3 44.9
13 14	5178 4107	. 22 . 21	38.5 33.0	.23	39.6 34.3

Diameter and Weight of Rubber Insulated Copper Wire and Cable

National Electric Code Standard. 0 to 600 Volts Triple Braid

					`
Wire		So	lid	Stra	nded
No., B. & S. Gauge	Area, Circular Mils	Diameter, Inches	Weight, Pounds per 1000 Feet	Diameter, Inches	Weight, Pounds per 1000 Feet
	1000000			1.54	3637
	900000			1.48	3304
	800000			1.42	2968
	700000		• • • • • • • • • •	1.35	2631
	600000			1.28	2290
	500000			1.17	1906
	400000			1.09	157 3
	300000			.99	1226
0000	211600	0.78	835	.85	879
000	167805	.73	685	• .79	719
00	133079	.69	564	.74	595
ò	105592	.65	474	.70	494
1	83695	.61	395	.66	412
2	66373	.51	297	. 59	324
3	52634	.48	247	. 52	260
4	41743	.46	208	.49	218
5	33102	.41	167	.46	184
. 6	26251	. 39	142	.41	149
			1	\	<u> </u>

Allowable Current-Carrying Capacity of Copper Wires

For Inside Wiring of Buildings

Wire No.,	Area,	Resistance,	Am	peres
B. & S. Gauge	Circular Mils	Ohms per 1000 Feet	Rubber Covered	Other Insulation
	2000000	.00524	1050	1670
	1800000	.00582	970	1550
	1600000	.00655	890	1430
	1400000	.0075	810	1290
	1200000	.00875	730	1150
	1000000	.0105	650	1000
	800000	.013	550	840
	600000	.018	450	680
	400000	.026	330	500
	200000	.052	200	300
0000	211600	.049	210	312
000	167800	.063	177	262
00	133100	.079	150	220
0	105500	. 100	127	185
1	83690	. 126	107	156
1 2 3 4	66370	.158	90	131
3	52630	. 200	76	110
4	41740	. 252	65 ·	92
5	33100	.316	54	77
5 6 8	26250	.400	46	65
	16510	.685	33	46
10	10380	1.05	24	32
12	6530	1.6	17	23
4	4107	2.56	12 .	/ 10

National Board of Fire Underwriters' Rules

.

Fusing Currents for Wires

Of Various Materials

Amperes of current required to fuse wires of lengths sufficient to render negligible the cooling action of the terminals.

				Mate	erial		
Wire No., B. & S. Gauge	Wire Diam., Inches	Copper	German Silver	Iron	Lead	Tin	Lead 2, Tin 1
10	. 10189	333	169	101	44.8	53.3	43.0
īĭ	.09074	284	146		38.2	45.4	36.6
12	.08080	235	120	71.2	31.6	37.6	30.3
13	.07196	200	102	63.0	26.9	32.0	25.8
14	.06408	166	85.2	50.2	22.3	26.6	21.4
15	.05707	139	71.2	42.1	18.7	22.2	17.9
16	.05082	117	60.0	35.5	15.7	18.8	15.1
17	.04526	99.0	50.4	32.6	13.3	15.8	12.8
18	.04030	82.8	42.5	25.1	11.1	13.2	10.7
19	.03589	66.7	34.2	20.2	8.96	10.6	8.60
20	.03196	58.3	29.9	17.7	7.84	9.31	7.50
21	.02846	49.3	25.3	14.9	6.63	7.89	6.35
22	.02535	41.2	21.1	12.5	5.53	6.60	5.32
23	.02257	34.5	17.7	10.9	4.44	5.52	4.45
24	.02010	28.9	14.8	8.76	3.89	4.62	3.72
25	.01790	24.6	12.6	7.46		3.93	3.17
26	.01594	20.6	10.6	6.22		3.30	2.66
27	.01419	17.7	9.10			2.83	2.28
28	.01264	14.7	7.50	4.45	1.98	2.35	1.90
29	.01126	12.5	6.41	3.79		2.00	1.61
30	.01002	10.3	5.26			1.64	1.32
35	.00561	4.37					
40 /	. 00314	1.86	.95	.50	6 .25	1/ .29	.24
/		1	<u> </u>	1	1	<u>\</u>	

Volts Lost with Various Copper Wire Combinations

	Sizes of Wires						Weight of Combina- tion, Pounds per 1000 feet.	Volts Los per Amper per 1000 feet.
One l	No. 0	000 a	nd O	ne No	o . 000	379405	1149	0.027
"	"	"	"	ű	00	344679	1044	.030
ű	"	u	ű	"	0	317192	960	.033
ű	u	ű	ű	u	1	295295	894	.035
One l	No. 0	000 a	nd Ty	wo N	o. 000	547210	1657	.019
"	"	"	"	u	00	477758	1447	.022
. "	u	u	u	u	0	422784	1280	.025
ű	u	"	"	ű	1	378990	1148	.027
One l	No. 0	00 an	d On	e No	. 00	300884	911	.035
"	"	"	"	"	0	273397	828	.038
"	u	"	u	"	1	251500	762	.041
One l	No. 0	00 an	d Tw	o No	. 00	433963	1314	.024
"	"	"	"	"	0	378989	1147	.027
ű	ű	u	u	"	1	335195	1015	.031
One l	No. 0	0 and	One	No.	0	238671	723	.043
"	u	ű	""	6	1	216774	656	.048
One l	No. 0	0 and	Two	No.	0	344263	1042	.030
u	ű	"	"	"	1	300469	910	.035
On e 1	Vo. 0	and	One 1	Vo. 1	L	189287	573	.055
e No.	0 ar	nd Tu	vo N	o. 1		272982	821	.03

Rail Bonds

PURPOSE—The purpose of a rail bond is to provide an electrical connection between rail ends, and thus cut down the power loss at rail joints in case the rail is used as a return for the electric current.

SELECTION—There are two major classes of bonds, namely the protected and the exposed.

If the roadbed is well laid, as on a main haul, it is advisable to use the protected bond, placed under the joint plate. If, however, the road bed is not solid and if there is likely to be more or less shifting and movement of the rail ends, the exposed bond should be used, as it can be inspected more readily than a bond placed under the fish plate.

A third class of bond, the semi-protected type, is really a combination of the two major classes. In this type, the body or central part of the bond is placed under the fish plate, while the terminals are located beyond the ends of the plate. This arrangement possesses some of the advantages of the protected bond and also permits ready inspection of the terminals.

The use of a bond whose resistance is as low as that of the rail would necessitate an initial expense which would not be offset by a corresponding gain in power. A loss, therefore, is suffered at each rail joint. The allowable resistance of the bond varies from .0001 to .0004 ohms, depending on the general economics of the construction.

Although no fixed rule can be prescribed for determining the proper size of bond to use, the following table gives the sizes generally found satisfactory:

Rails	16 pounds and lighter	0 t	ond
ű	20 to 30 pounds	00	u
ű	35 to 50 pounds	0000	u
ű	60 pounds and heavier2-	-0000	"

If protected or semi-protected bonds are to be used, their size must be determined with due consideration of the available space under the joint plate so as to prevent binding by the plat

Rail Bonds-Continued

Exposed bonds should be 10 inches longer than the fish plate. Cross bonds should be 12 inches longer than the width of the track gauge. Use of bonds too short usually results in breakage due to crystallization.

INSTALLATION—A bond is no better than the joint it makes with the rail. In order to assure a good electrical contact, the hole in the rail should be the exact size of the bond terminal; and the bond should be applied immediately after the hole is drilled. If this is impracticable, all rust, dirt or moisture should be cleaned out of the hole before applying the bond.

Both rails should be bonded. Cross bonds should be applied every 100 or 150 feet.

Particular attention should be given to bonding around switches and frogs.

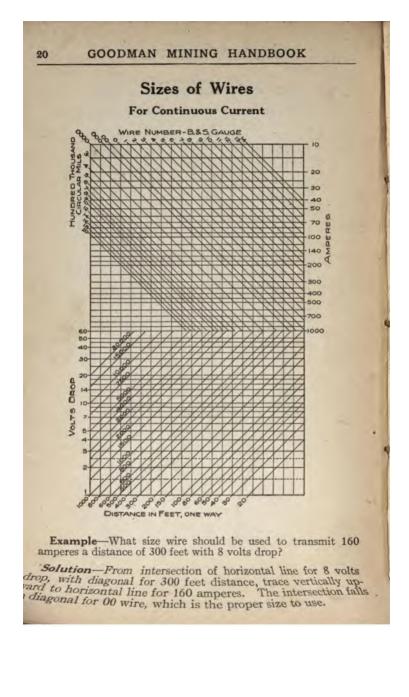
If the terminal is welded to the rail, care should be taken to avoid any oxidizing flame which takes the life out of the material.

The pressure applied to compressed terminals should be sufficient to cause the metal actually to flow and thus become forced into good contact with the rail.

MAINTENANCE—The rail bonding should be inspected at regular intervals, loose terminals tightened and broken bonds replaced.

Feeling for hot rail joints or shaking the bond to see if it is loose is a guess work method of testing bonds. A bond may be tight and still make a poor contact with the rail, due to a film of oil or some foreign matter being lodged between the terminal and the rail.

The proper method of testing bonds is to use a bond testing meter. This bond tester gives the resistance of the rail joint and bond in terms of length of rail. If it is established that a properly installed bond should be equivalent to 4 feet of rail, all bonds which test out to have a resistance greater than this amount should be given attention. With the use of a bond tester, a large number of bonds can be tested accurately in a thort time.


Volts Drop in Bonded Track

Volts Lost per Ampere per 1000 Feet of Single Track (Ohms per 1000 Feet)

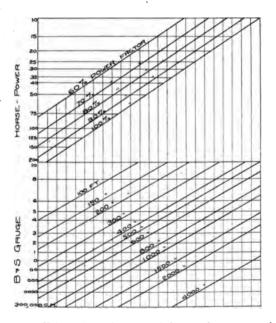
Both Rails Bonded

Resistance ratio of rail to copper, $11\frac{1}{2}$ to 1.

Rail Weight, Pounds per Yard	Fish Plate Length, Inches	Length of Exposed Bond, Inches	Bond Size, Wire Gauge	Rail Lengths, Feet	Volts Loss per Ampere per 1000 Feet
8 12 16	16 ¹ / ₈ 16 ¹ / ₈ 16 ¹ / ₈	26 26 26	0 0 0	20 20 20	0.0587 .0409 .0319
20 25 30	16½ 16½ 16½	26 26 26	2/0 2/0 2/0	20 20 20	.0256 .0214 .0184
35 40 50	16½ 20 24	26 30 36	4/0 4/0 4/0	20 30 30	.0149 .0119 .0102
60 70 80 90 100	24 34 34 34 34 34	36 44 44 44 44	2-4/0 2-4/0 2-4/0 2-4/0 2-4/0	30 30 30 30 30	.0085 .0074 .0067 .0061 .0056
/					

GOODMAN MINING HANDBOOK

Sizes of Wires


For 220-Volt, 3-Phase A. C. Circuits-10% Drop

This diagram does not pertain to the heating of wires.

On single-phase circuit the wire must have twice the area given by the diagram.

On 2-phase, 4-wire circuit the wire must be the same size as

shown by the diagram. On 440-volt circuit the distance that a given horsepower can be carried with 10% loss will be four times the value in the diagram; or the power can be made four times as large with the distance the same.

EXAMPLE-What size wire should be used to transmit 25 horsepower at 220 volts, with 10% drop, on a 3-phase 3-wire line 1000 feet long, with an 80% power factor?

SOLUTION-Starting at the upper left side at the point marked 25 Horsepower, go horizontally to the diagonal line marked 80% Power Factor; thence vertically down to the line marked 1000 Ft.; thence horizontally to the left, to find the require size of wire, namely, No. 1.

Formulas for Transmission Line Calculations

These formulas, and the tables of Constants on the following page are based upon a spacing of 18 inches for the wires, and results are sufficiently accurate for practical purposes with wires approximately that distance apart. Capacity has been neglected.

ALTERNATING CURRENT:

Area of conductor, circular mils	$= \frac{D \times W \times K}{P \times E^2}$
Current in each conductor, amperes	$-\frac{W \times T}{E}$
Loss in lines, volts	$=\frac{P \times E \times M}{100}$

Weight of Copper, pounds

$$= \frac{W \times T}{E}$$

$$= \frac{P \times E \times M}{100}$$

$$= \frac{D^2 \times W \times K \times A}{P \times E^2 \times 1,000,000}$$

Wherein:

- A =Constant (See table, next page).
- D = Distance of transmission, one way, in feet.
- E = Voltage between main conductors at receiving or consumer's end of circuit.
- K For any power factor =2160 divided by the square of that power factor, for single phase.
 - =2160 divided by twice the square of that power factor, for 2-phase, 4-wire and 3-phase, 3-wire.
- M =Constant (See table, next page).
- P -Loss in line, in percentage of power (W) delivered to consumer.
- T =Constant (See table, next page).

W = Total watts delivered to consumer.

Power factors for balanced circuits-

Single phase:	Actual watts delivered. Volts × Amperes
2-phase, 4-wire:	Actual Watts, Total. $2 \times Volts \times Amperes (per phase)$
3-phase, 3-wire:	Actual Watts, Total. 1.73 Volts × Amperes (per phase)

DR DIRECT CURRENT: A =6.04, K =2160, M =1, T =1.

Constants for **Transmission Line Calculations**

m	1	Values	Values of K			Values of T					
Phases	of Nires		Per Cent Power Factor				Per Cent Power Factor				
P	A	A	100	95	85	80	100	95	85	80	
1		6.04	2160	2400	3000	3380	1.00	1.05	1.17	1.25	
2	4	12.08	1080	1200	1500	1690	.50	.53	. 59	.62	
23	3	9.06	1080	1200	1500	1690	.58	.61	.68	.72	

			Values of M								
	Wire No.,		25 C	ycles		60 Cycles					
	B. & S. Gauge	Per	Cent P	ower Fa	ctor	Per	r Cent P	ower Fa	ctor		
	Gauge	95	90	85	80	95	90	85	80		
	0000 000	1.23	1.29 1.22	1.33 1.24	1.34 1.24	1.62 1.49	1.84 1.66	1.99 1.77	2.09 1.95		
	00 0	1.14 1.10	1.16	1.16 1.10	1.16	1.34 1.31	1.52 1.40	1.60 1.46	1.66 1.49		
	1 2	1.07 1.05	1.07 1.04	1.05 1.02	1.03 1.00	1.24 1.18	1.30 1.23	1.34 1.25	1.36 1.26		
	3 4	1.03 1.02	1.02 1.00	1.00 1.00	1.00 1.00	1.14 1.11	1.17 1.12	1.18 1.11	1.17 1.10		
	5 6	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.08 1.05	1.08 1.04	1.06 1.02	1.04 1.00		
٠	7 8	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.03 1.02	1.02 1.00	1.00 1.00	1.00 1.00		
	9 10	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00		$\frac{1}{2} \int_{\alpha}^{0} \frac{1}{\alpha}$	$\left \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right ^{1.00}$		

Current Required for Motors Amperes at Various Voltages

Horse Power	Efficiency*	Watts			Amperes	_	
of Motor	Per Cent	Input	110 Vol ts	220 Volts	250 Volts	500 Volts	550 Volts
1	65	1148	10.4	5.2	4.58	2.29	2.08
2	65	2295	20.8	10.4	9.16	4.58	4.16
2½	65	2870	26.0	13.0	11.45	5.72	5.21
31/2	75	3481	31.6	15.8	13.9	6.90	6.32
5	75	4973	45.1	22.6	19.9	9.95	9.0 4
71/2	80	6994	63.5	31.7	27.9	13.95	12.7
10	80	9325	84.6	42.3	37.2	18.6	16.9
15	85	13165	119.8	5 9.9	52.7	26.4	23.9
20	85	17553	159.6	79.8	70.2	35.1	31.9
25	90	20770	189.0	94.5	83.1	41.6	37.8
30	90	24864	225.8	112.9	99.4	49.7	45.2
40	90	33232	302.6	151.3	133.0	66.5	60.5
50	90	41540	378	189.0	166.2	83.1	75.6
75	90	62310	567	283.5	249.3	124.8	113.4
100	93	80215	729	364.3	320.5	160.3	145.7
125	93	100269	912	456			182. 3
150	93	120322	1094	547	481	240.7	219
200	94	158510	1442	721	634	317	288
_/	/	/					\

Nors-Efficiencies are taken arbitrarily. A variation in these percentages will make

.

Kilowatts and Horsepower

0.746 Kilowatts = 1 Horsepower

Kilowatts to Horsepower			Horsepower to Kilowatts				
K₩.	Horsepower	Kw.	Horsepower	Н _. Э.	Kilowatts	Hp.	Kilowatts
1	1: 341	55	73.733	1		55	41.03
2	2.681	60	80.436	2	1.492	60	44.76
3	4.022	65	87.139	3	2.238	65	48.49
4	5.363	70	93.842	4	2.984	70	52.22
5	6.703	75	100.545	5	3.730	75	55.95
6	8.044	80	107.248	6	4.476	80	59.68
7	9.384	85	113.951	7	5.222	85	63.41
8	10.725	90	120.654	8	5.968	90	67.14
9	12.065	95	127.357	9	6.714	95	70.87
10	13.406	100	134.048	10	7.460	100	74.60
11	14.747	110	147.47	11	8.206	110	82.06
12	16.087	120	160.87	12	8.952	120	89.52
13	17.428	130	174.28	13	9.698	130	96.98
14	18.768	140	187.68	14	10.444	140	104.44
15	20 .109	150	201.09	15	11.190	150	111.90
16	21.450	160	214.50	16	11.936	160	119.36
17	22.790	170	227.90	17	12.682	170	126.82
18	24.131	180	241.31	18	13.428	180	134.28
19	25.471	190	254.71	19	14.174	190	141.74
20	26.812	200	268.12	20	14.920	200	149.20
22	29.493	220	294.93	22	16.412	220	164.12
24	32.174	240	321.74	24	17.904	240	179.04
26	34.856	260	348.56	26	19.396	260	193.96
28	37.537	280	375.37	28	20.888	280	208.88
30	40.218	300	402.18	30	22.380	300	223.80
32	42.899	325	435.69	32	23.872	325	242.45
34	45 .580	350	469.21	34	25.364	350	261.1
36	48.261	400	536.24	36	26.856	400	298.4
38	50.943	450	603.27	38	28.348	450	335.7
40	53.624	500	670.30	40	29.840	500	373.0
42	56.305	600	804.36	42	31.332	600	447.6
44	58.986	700	938.42	44 \	32.824	/ 100,	\$22.2
46	61.667	800	1072.48	46	34.316	800	
48	64.349	900	1206.54	48		· .	100 746.
50	67.030 1	1000	1340.60	50) 37.30	0 //r/	1

Mechanical and Electrical Equivalents

Unit	Equivalent	Unit	Equivalent
1 heat unit B. T. U.	 1 lb. water heated from 62° F. to 63° F. .001036 lbs. water evapor- ated from and at 212° F. .0000688 lbs. carbon oxid- ized. 1055 watt-seconds. 107.6 kilogram-meters. 	1 joule	1 watt-second. •000000278 kilowatt- hours. •102 kilogram-meters. •0009477 heat units. •7373 foot-pounds.
	107.0 kilogram-meters. .000393 hphours. 778 foot-pounds. .252 calories. 970 heat units. 1019000 joules.	1 watt	.001 kilowatts. 1 joule per second. .00134 horse power. .73 ftpounds per second. 44.24 ftlbs. per minute.
1 lb. water evaporated from and at 212° F.	751300 foot-pounds. .283 kilowatt-hours. .379 hphours. 103900 kilogram-meters.	1 kilogram- meter	7.233 foot-pounds. .00000365 hphours. .00000272 kilowatt-hours. .0093 heat units.
1 foot- pound	1.356 joules. 1.383 kilogram-meters. .000000377 kilowatt- hours.		1000 watts. 1.34 horse power. 2654200 ftlbs. per hour. 44,240 ftlbs. per minute. 737.3 ftlbs. per second.
1 hp.	33000 ft. lbs. per minute. 550 ftlbs. per second. 2545 heat units per hour 2.64 lbs. water evaporated per hour from and at 212° F.	1 kilowatt	 3412 heat units per hour, 56.9 heat units per minute, .948 heat units per second, 3.53 lbs. water evaporated from and at 212° F.
	 746 watts. .746 kilowatts. 1980000 foot-pounds. 2545 heat units. 2.64 lbs. water evaporated from and at 212° P. 17.0 lbs. water raised from 62° F. to 212° F. 46 kilowatt-hours. 	1 kilowatt- hour	 1000 watt-hours. 1.34 hphours. 2654200 ftlbs. 3600000 joules. 3412 heat units. 367000 kilogram-meters. 3.53 lbs. water evaporated from and at 212° F. 22.75 lbs. water raised from 62° F. to 212° F.

Metric and English Equivalents

1. To Convert Metric to English Units

Multiply	By	To Get
Centimeters Meters Meters Square Centimeters Square Kilometers Square Kilometers Cubic Centimeters Cubic Meters Litres Kilograms Kilograms	0.3937 3.2808 1.09361 0.62137 0.1550 10.7641 0.38611 247.114 0.0610 35.3140 0.2642 2.20462 0.001102	Inches Feet Yards Miles Square Inches Square Feet Square Miles Acres Cubic Inches Cubic Inches Cubic Feet Gallons (American) Pounds (Avoirdupois) Tons (2000 Pounds)

2. To Convert English to Metric Units

Multiply	Ву	To Get
Inches Feet Yards Miles Square Inches Square Feet Square Miles Acres Cubic Inches Cubic Inches Cubic Feet Gallons (American) Pounds (Avoirdupois) Tons (2000 Pounds)	2.5001 0.3048 0.9144 1.60935 6.4516 0.0929 2.58899 0.004047 16.3934 0.02834 3.785 0.4536 905.79	Centimeters Meters Meters Square Centimeters Square Meters Square Kilometers Square Kilometers Cubic Centimeters Cubic Centimeters Cubic Meters Litres Kilograms Kilograms

Mine Haulage

On level track the pulling force required to haul a load is that necessary to overcome the resistance due to track and equipment. In mine haulage these resistances vary in total between 1 percent and 2 percent of the train weight, the amount depending upon conditions of track, lubrication, etc.

On up grades another factor must be considered; namely, grade resistance, which is equal to that component of the total train weight acting downward and along the track. This grade resistance varies with the grade and, for a given percentage of grade, is equal to that same percentage of the train weight.

The adhesion between the locomotive wheels and the rails, effective for development of drawbar pull is:

Chilled cast iron wheels:

Dry rail with sand Dry rail without sand Wet rail5 to	25% 20% 15%	of "	weight "	on "	drivers "
Steel tired wheels:					
Dry rail with sand Dry rail without sand Wet rail5 to	33% 25% 15%	of "	weight "	on "	drivers "

The resistances which affect the hauling power of a locomotive are:

1. Locomotive friction—gearing, bearing, flange, etc.: For a new locomo-

worn into service. 10 to 15 """""""" 2. Train friction and

track condition.. 20 to 40 lb. per ton of train weight.

3. Grade..... 20 lb. per ton of locomotive and train weight for each 1% of grade.

Friction and track resistances oppose the locomotive at all times and reduce its hauling capacity on the level and on grades. Grade resistance opposes the locomotive in ascending grades and assists it in descending. Total resistances therefore are: On level and up grade, friction resistance plus grade resistance; down grade, friction resistance minus grade resistance. Hence grade "resistance" be greater than friction resistance, the in will run down grade without power. That is, if friction

resistance is 30 lbs. per ton, the train will stand at rest on a 1 percent grade (20 lb. per ton grade resistance) and would run by gravity down a 2 percent grade (40 lb. per ton grade resistance).

Tractive effort and drawbar pull are not equal. Tractive effort measures the power of the locomotive as exerted by the wheels on the rails; drawbar pull is less than tractive effort by the amount of the locomotive resistance due to both friction and grade.

Drawbar Pull—To haul a given trainload on the level or up a grade:

$$D = W (F + G)$$

wherein,

D = drawbar pull, in pounds.

W = weight of train, in tons.

- F=resistance of train due to friction, in pounds per ton of train weight.
- G=resistance due to grade, 20 pounds for each 1 percent of grade.

EXAMPLE—Train weight, 60 tons; resistance due to friction, 30 lb. per ton; grade 2 percent. Then

$$D = 60 (30 + 40)$$

= 4200 lb.

Tractive Effort—To haul a given trainload, including the locomotive itself, on the level or up a grade:

$$T = D + L (f + G)$$

wherein,

T = tractive effort, in pounds.

D = drawbar pull, in pounds.

 \mathbf{L} = weight of locomotive, in tons.

- f=resistance of locomotive due to friction, in pounds per ton of weight.
- G=resistance due to grade, 20 pounds for each 1 percent of grade.

EXAMPLE—Drawbar pull, 4200 lb.; locomotive weight, 15 tons; locomotive resistance due to friction, 15 lb. per ton; grade, 2 percent. Then

$$T = 4200 + 15 (15 + 40)$$

= 5025 lb.

ē

Weight of Locomotive — To haul a given trainload, on the level or up a grade:

$$L = W \frac{F+G}{(20 \times A)-(f+G)}$$

wherein,

L = weight of locomotive, in tons.

W = weight of train, in tons.

- F = resistance of train due to friction, in pounds per ton of train weight.
- f=resistance of locomotive due to friction, in pounds per ton of locomotive weight.
- G=resistance due to grade 20 pounds for each 1 percent of grade.
- A=coefficient of track adhesion, in percentage of locomotive weight on drivers.

EXAMPLE— Train weight, 60 tons; train resistance due to friction, 30 lb. per ton; locomotive resistance due to friction, 15 lb. per ton; grade, 2 percent; adhesion, 25 percent. Then

$$L = 60 \frac{30+40}{(20\times25)-(15+40)}$$

= 9.66, or a 10-ton locomotive.

Horsepower—To develop a desired drawbar pull at given speed $H = D \times S \div 375$

wherein,

H = horsepower.

D=drawbar pull, in pounds.

S = speed, in miles per hour.

EXAMPLE - Drawbar pull, 4200 lb.; speed, 6 miles per hour. Then

$$H = 4200 \times 6 \div 375$$

= 67.2 horsepower

On Heavy Grades

As the percentage of grade increases, the hauling capacity of a traction locomotive is seriously reduced, not only because of the increase of train resistance, but also because the effective drawbar pull of the locomotive is constantly reduced by the grade percentage of the weight of the locomotive itself.

Consider a locomotive with chilled wheels, at 20 percent adhesion. On level track the drawbar pull would be 400 pounds per ton of weight in the locomotive. On a grade this drawbar pull would be reduced by the grade resistance factor of the locomotive itself, or 20 pounds per ton of locomotive weight for very 1 percent of grade—a loss of 5 percent of drawbar pull for rery 1 percent of grade. On a 4 percent grade the level-track drawbar pull of 400 pounds per ton of locomotive weight is reduced by 20 percent, or 80 pounds, leaving 320 pounds of effective pulling force for train hauling. On a 10 percent grade the effective drawbar pull is reduced 50 percent, the remainder of the motive power being consumed in lifting the locomotive itself up the grade.

Hence the 10-ton locomotive which will haul 90 tons of train weight on level track will haul only 40 tons up a 2 percent grade, 23 tons up a 4 percent grade, 15 tons up a 6 percent grade, 10 tons up an 8 percent grade, and 63% tons up a 10 percent grade.

This high rate of reduction of pulling force on grades is due largely to the lack of positive relation between the horsepower of the locomotive and the adhesion through which alone the motor power can be made effective in a traction locomotive. Where grades are encountered, therefore, a positive method of haulage is desirable, to make the motor horsepower fully available for pulling train load, avoiding the difficulties of traction haulage on grades and eliminating the excess dead weight which, ⁱⁿ a traction locomotive, is necessary to give the required adhesion.

The Goodman Rack Rail Haulage system is positive, affording the desirable freedom from dependence on adhesion for pulling power and enabling effective realization of full motor power at all times, under all conditions, on the level or on grades. This system combines all the positiveness of the rope haul with the flexibility, safety, convenience and other advantages of locomotive operation. Where roadways are generally level and grades only local, the Combination Rack Rail and Traction system meets exactly the needs of the situation.

Operators whose mine haulage work involves grades should call upon the Goodman Manufacturing Co. for careful engineering advice as to the haulage system best suited to the conditions —traction, combined traction and rack rail, or plain rack rail. Supplying equipment of all types, the Goodman company can and will apply an unbiased and experienced judgment to the requirements of each individual case.

Types of Goodman Rack Rail Locomotives are illustrated on pages 198 and 199.

			Up 447 563 663 663 663 1118 1125 1125 1125 1125 1125 1125 1125	Tons of N Tons of N Up 1% Grade 0 0 30 4 30 44 74 30 86 37 31 49 74 32 49 37 33 49 93 31 133 1 33 133 1 33 133 1 33 1 133 33 1 1	f Net T de de 2000 300 400 400 400 400 400 400 400 400	Tain We Tain We Up Up Up Up Up 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Weight (exclu UP 2% Grade n, Pounds per 30 26 11 55 11 55 11 93 11 11 11 11 11 11 11 11 11 11 11 11 11	Net Train Weight (exclusive of e Up 2% Grade e Up 2% Grade Car Friction, Pounds per Ton of 40 20 30 30 26 40 20 30 40 20 30 50 50 40 61 61 52 34 71 71 59 51 76 64 55 33 81 66 64 55 101 101 83 73 111 119 83 80 151 111 93 80	13 16 2 0004 0000 005	the Locomotive) Up 3% Grade Train Weight* 20 30 19 22 19 23 30 44 33 32 55 48 55 48 55 48 55 51 73 64 70 880 70 83 71 64	ve) 40 42 42 42 42 40 40 40 40 40 40 40 40 40 40	^d ^D ²⁰ ^d ^D	Up 4% Grade 3 3 3 3 3 3 15 3 3 3 3 3 3 3 15 3 5 5 5 1 15 5 5 5 5	80 80 80 80 80 80 80 80 80 80
13 13 15 646 646	275 318 424	203 234 312	203 234 312	160 246 246	132 161 202	132 161 202	111 127 170	8 <u>1</u> 3	95 110 146	28 83 128 83	74 85 114	74 85 114	102 85	898

	300	DD	MA	N	MINING	HANDB	OOK	3	
	-	uđe		\$	0230	325423	35 41 63	and the	
		Up 4% Grade		30	11 18 21 21 21	25 28 36	153430	cation.	
		ΩD		20	280512	40338 80338	4288	he lubrid	
	/e)			40	24 20 21 24 29 29 29 29 29 29 29 29 29 29 29 29 29	40 33 33 38	4288	with t	
ails	ocomotiv	Up 3% Grade	eight*	30	14 18 23 27	32 34 36	91 88 91 91 91 91 91 91 91 91 91 91 91 91 91	varying	
Dry R sight.	of the Lo	Up 3	Frain W	20	16 21 32 32	37 33 52	58 69 105	amount	
Tree or Steel Wheels. Clean Dry Rails Adhesion 25% of Locomotive Weight.	Tons of Net Train Weight (exclusive of the Locomotive)		Car Friction, Pounds per Ton of Train Weight*	40	32 21 f	37 33 52	58 69 105	tc., the	
	ight (ex	Up 2% Grade	nds per	30	18 31 37 37	64 43 62 49 62	68 80 123 123	stance, e	
al Whe % of L	rain We	Up 2	on, Pou	20	2824	51 55 74	80 95 110 146	ack resit	
Steel Tires or Steel Wheels. Adhesion 25% of Locom	f Net T		ar Fricti	40	# 3332	51 55 74	80 95 110 146	ance, tr	
Tires Adhe	Tons o	Up 1% Grade	0	30	27 36 54 54 54	88 88 90 21 88 20 80 80 80 80 80 80 80 80 80 80 80 80 80	99 117 135 180	al resist	
Steel		Up 1		20	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	81 86 92 116	127 150 172 230	of journ	
			-		40	\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	81 86 92 116	127 150 172 230	lade up
		Level Track		30	47 63 94	112 118 125 125	173 214 235 313	Ar Friction is made up of journal resistance, track resistance, etc., the amount varying with the lubrication, and the	
		Lev		20	22 96 144	168 192 240	264 312 360 480	Prict	
	Э Л	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ioco isW DT	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	112	3 20,00	2 _//	

•

.

/					Tons	of Net T	rain We	sight (er	Tons of Net Train Weight (exclusive of the	Tons of Net Train Weight (exclusive of the Locomotive)	ocomoti	ve)			
suc sug sug sug	13	Level Track	Ä	ĥ	Up 1% Grade	de	ďΩ	Up 2% Grade	de	ďn	Up 3% Grade	de	ŋ	Up 4% Grade	ade
∍₩ PT						ar Frict	ion, Pou	inds per	Car Friction, Pounds per Ton of	Train V	Train Weight.*				
	20	30	40	20	30	40	20	30	40	20	30	40	20	30	40
∞ 4	72 96	47 63	35 46	35 46	27 36	33	33	18 25	16 21	16 21	14 18	12 16	12 16	11	13
0 00	120	82 84	800	83.09	24 54 54 54 54 54 54 54 55 54 55 55 55 55	\$	64	31	32	328	23	242	24	21	196
122	168 180 192	112 118 125	888 888	885 885 885	288	55.55	55.55	64 64 64 64 64 64 64 64 64 64 64 64 64 6	33 39 43	33 39 43	33.33	398	30.8	52 52 52 52 52 52 52 52 52 52 52 52 52 5	242
<u>ه ق</u>		156	116	116	8	74	74	62	22	52	\$	\$	4	36	32
11;	264 312	173 214	127 150	127 150	99 117	8%	88	38	88	88	88	42	4 2	84	35 41
126	88 88 80	313	172 230	172 230	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	146	110	123	105	105	8916	88	88	12	4 3

	GO	DD.	MA	N	MINING	HANDE	OOK	3
		ade		40	19 11 14	16 19 23	46 33 26 46 33 26	and the
Chilled Cast Iron Wheels. Clean Dry Rails Adhesion 20% of Locomotive Weight		Up 4% Grade		30	81118 10 10	21 20 26 26	29 52 52 52	cation,
		dŋ		20	9 21 2 8	30 24 32 30	66 53 93 33	he lubri
	ve)	de		40	9 21 2 8	30,233 30,233	6533	g with t
Rails	ocomoti	Up 3% Grade	Train Weight.*	30	11 11 11 11 11	2828 2828	38 52 69	t varyin
Clean Dry Rails blive Weight	of the L	dŋ	f Train	20	250552	40 3 3 8 8 40 3 9 8	4285	amoun
	Tons of Net Train Weight (exclusive of the Locomotive)	de	Car Friction, Pounds per Ton of	40	258151 24 25	40 38 88 40 38 88	4285	etc., the
locom.	eight (ex	Up 2% Grade	ounds po	30	24 24 28 28	33 33 33 47	52 61 27 61 27	istance,
Chilled Cast Iron Wheels. Adhesion 20% of Locome	rain We	d'U D	ction, Po	20	328231	38 55 57	62 74 85 81 113	rack resi
ast Ir esion 24	of Net T	de	Car Fri	40	11 28 34 34	38 45 57	62 74 85 113	tance, t
Adh	Tons	Up 1% Grade		30	21 35 35 35 42	49 28,53 20	77 91 105 140	nal resis
Ch		đ		20	22 36 54 54 54	8388	99 117 135 180	of jour track.
		×		40	27 36 45 54	88 88 90 20 80	99 117 135 180	made up ent and
		Level Track		30	37 49 61 74	86 93 123	136 160 185 246	Friction is made up of journal resistance, track resistance, etc., the amount varying with the lubrication, and the the coupment and track.
		Ĕ		20	57 76 95 114	133 152 190	280 285 380 380	Price
	<u>م</u> د	sn shot	nox Mei oT	r	64500	112	<i>õ zä</i> r	28

Storage Battery Haulage

The ability of the Storage Battery Locomotive to operate over ordinary track, without trolley wiring or rail bonding, makes it very attractive for haulage work. In some mines storage battery locomotives have proved very successful, while in others presenting apparently similar conditions, they do not do so well. The difference in results is usually due to the difference in the handling and care which the locomotives and batteries receive.

The storage battery today is well known, and is a dependable device when properly selected for the work to be done, and properly handled. The care required to maintain it is not difficult, but happens to be of a different kind from that needed with other mine machinery with which men have long been familiar. With the designing of batteries better adapted for locomotive work, as brought on the market in recent years, and with the improvement in design of storage battery locomotives, the legitimate field of application of the battery locomotive has widened.

The developmental period has brought out several types of battery locomotives, which may be classed as follows:

Class A: Operated by storage battery only and which usually carry sufficient charge to last one working shift. Under conditions of excessive demand, boosting charges during the noon hour or other idle periods enable the locomotive to continue work during the full shift.

Class B: Operated by either battery or trolley.

Class C: Operated by battery or trolley as in Class B, but having in addition a charging rheostat and the necessary control apparatus on the locomotive to charge the battery while the motors are taking power from the trolley or while the trolley is on the wire.

Storage battery locomotives can be divided again into two groups, according to the method of their motoring:

Group 1: Single motor. Equipped with a low voltage motor to match conveniently the battery voltage. The scope of operation is limited by the capacity of the battery, as they cannot operate from the trolley. The speed is usually between three and four miles per hour at full running drawbar pull.

Group 2: Two motor. Equipped either with two low voltage motors, which are connected in series when operating from the trolley and in multiple when operating from the battery, or with two regular 250-volt railway motors, operating in multiple either from battery or trolley. The windings or designs in some cases are modified to take care of the lower voltage of the battery. With the latter plan the speed is usually considerably

Storage Battery Haulage-Continued

lower when operating on the battery than when running on the trolley, at the same drawbar pull.

Up to the present time the greatest application of storage battery locomotives has been for gathering in rooms and making comparatively short entry runs to convenient partings. Second in importance is entry gathering work, where the locomotives collect cars into trips on the entries and haul them to convenient partings at comparatively short distances.

A third application is for small main haulage work where the haulage is restricted either (a) by the total tonnage requirements, (b) by short grades, (c) by easy favorable grades, or (d) by short runs, so that the capacity of the work comes within the practical constructive limits of storage battery locomotives.

A fourth application uses the combination battery and trolley locomotive operating as a trolley locomotive on the longer runs or under the more difficult conditions. This is by far the largest field of application.

To meet the varying conditions to the best advantage, the Goodman Manufacturing Co. has developed the Articulated Storage Battery Locomotive, the motors of which are especially designed for the service and have split field control.

In gathering work the locomotive starts frequently and efficient control is necessary. The split fields reduce the rheostatic losses. The articulated construction permits the use of a battery as large as may be desired, yet without reducing the flexibility of the locomotive or detracting from its maneuvering ability. Thus the locomotive can have the greatest possible range, as a storage battery locomotive of Class A.

Where the hauls are longer or the duty more severe so that it becomes advisable to use trolley part of the time, the articulated locomotive is better adapted for combination work than other designs because its motors can be operated in series from the trolley. And by reason of the long motor wheelbase between the two trucks, the tractive ability of the locomotive is not reduced appreciably when the motors are operating in series. In the ordinary four-wheeled constructions with two motors it is practically impossible to obtain the maximum tractive effort with the motors connected in series by reason of the fact that one pair of drivers may slip more than the other.

Control of the Articulated locomotive is so arranged that a change from trolley to battery, or vice versa, is through interlocking mechanism, making mistakes impossible.

The speed of the locomotive when hauling its load shows be difference between battery and trolley operation than is four with other forms of control.

Storage Battery Haulage-Continued

Inasmuch as a large proportion of the weight in a storage battery locomotive is in the battery, the selection of a proper storage battery locomotive for a given service should be based primarily upon battery capacity and drawbar pull, rather than upon weight.

Storage batteries on locomotives are called upon to discharge, intermittently, currents in excess of the normal discharge rate. There is a decrease of efficiency as the discharge rate increases above normal, and consequently a decrease of the total kilowatthour capacity below what can be realized at normal rate of discharge.

Storage batteries have certain recuperative characteristics when allowed periods of rest or of low discharge rate between the periods of higher intermittent discharge rates, but in mining practice it is uncertain that the service can be planned to give these rest periods.

The less the maximum discharge rate exceeds the normal discharge rate, the longer will be the life of the battery. Safe and conservative locomotive practice dictates that the battery selected should be such that the maximum current called for by the motors will be a small multiple of the normal discharge rate.

Selection of a storage battery involves consideration of three factors and the striking of a proper balance among the three:

a. Maximum intermittent discharge rate.

b. Kilowatt-hours capacity.

c. Weight, bulk and cost of battery.

Storage Battery Data Edison Batteries

Edison batteries should be charged at a constant rate throughout the entire period of charging.

	Type and Size	Kilowatt Hours per Cell	Weight per Cell, Includ- ing Trays, Pounds	Normal Charging Time, Hours	Normal Dis- charg- ing Time, Hours	Normal Rate of Charging and Dis- charging, Amperes	Normal Dis- charge, Am- pere- Hours	Maximum Rate for In- termittent Discharge, Amperes
	A- 8 A-10 A-12	0.360 .450 .540	29.5 36.2 44.8	7777	555	60 75 90	300 375 450	300 350 400
GG-18 G-18	- 9/11/4	.270 .330 .420 540	22 30 36 48	43/4 43/4 43/4 43/4 43/4	31/8 31/8 31/8 31/8 31/8	$ \begin{array}{r} 67\frac{1}{2} \\ 82\frac{1}{2} \\ 105 \\ 135 \end{array} $	225 275 350 45	

Storage Battery Data—Continued Lead Batteries

Lead batteries should be charged at a diminishing rate, either (1) at a constant voltage of 2.3 volts per cell, in which case the rate will automatically diminish as the charging proceeds, or (2) by using the starting rate given below until the cells begin to gas, and then reducing to the finishing rate given below and continuing at this rate until charging is completed.

Number of Plates	Kilowatt- Hours per Cell	Weight per Cell, Includ- ing Trays, Pounds	Normal (Rate, A Start	Charging mperes Finish	Normal Discharge, Ampere- Hours
	1	MVY Iron	Clad Exid	e	
11	0.315	44	30	12	35
13	.378	51	35	14	42
15	.441	58	40	16	49
17	. 504	65	45	18	56
19	. 567	72	51	20	63
21	.630	78	56	22	70
23	.693	86	61	24	77
25	.756	93	66	26	84
		MVY	Exide		
11	0.2976	43.8	30	12	35
13	.357	50.8	35	14	42
15	.4166	58	40	16	49
17	.476	65.5	45	18	56
19	.5356	72	51	20	63
21	. 595	78.5	56	22	70
23	.6546	86.3	61	24	77
25	.714	92 .9	6 6	26	84
		Philade	lphia		
11	0.3	34.2	28	7	30
13	.36	40	34	9	36
15	.42	45.5	40	10	42
17	.48	51.7	45	12	48
19	.54	57.7	51	14	54
21	.6	63.5	56	15	60
23	.66	69.5	· 62	17	66
25	.72	75.5	68	(19	$\langle n$
27	.78	81.5	1 73	\ 2\	\ 78
29	.84	87.2	1 78	\ 23	. 84
31	.9	93	83	\ 2	5 / 6
	.96	98.7	88		27

Percentage and Degrees of Grade

Ratio of Rise (A) to travel along the grade (B).

Ratio of rise (A) to horizontal projection (C) of travel along the grade.

	<u>~</u>		0			
	[Angular	Equivalent	;	
Grade Per	Rat	io of A to	в	Rat	io of A to	C ·
Cent	Degrees	Minutes	Seconds	Degrees	Minutes	Seconds
1	0	34	22.8	0	34	22.8
2	1	8.	45.5	1	8	45.5
3	1	43 17	8.3 33.1		43	6.2
2 3 4 5	1 2 2	51	58.0		17 51	26.9 45.5
		26	22.8	1	26	2.0
6 7	3 4	0	49.6	3 4	0	14.5
8		35	18.6	4	34	26.0
9	4 5 5	9	49.6	4 5 5	8	34.0
10	5	44	20.7		42	38.0
12	6	53	31.1	6 7	50	34.0
. 14	6 8 9	2	51.8		58	10.3
16 18	10	12 22	24.8 10.7	9 10	5 12	24.8 14.0
20	11	32	12.9	11	18	36.0
22	12	42	32.2	12	24	27.1
24	13	53	10.7	13	29	44.5
. 26	15	4	12.8	14	34	27.1
28 30	16 17	15 27	36.4	· 15 16	38 41	31.9 58.0
			27.8			
35	20	29	15.0	19	17	23.6
40 45	23 26	34 44	41.5 36.9	21 24	48 13	5.3 39.4
50	30	0	0.0	26	33	53.4
55	33	22	2.4	28	48	39.5
60	36	52	12.5	30	57	49.5
65	40	32	30.0	33	1	25.7
70 75	44 48	25 35	37.2 25.3	34 36	59 52	31.4 11.7
80	53	7	49.4	38	39	35.0
90 100	64 90	9	27.7	41	59	13.8
<u>. </u>	<u> </u>	0	0.0	45	0	1 0.0

40

· P

C

Rail Weights to Use

Weight of		Weight of Rail,	Pounds per Yar	đ
Locomo-	Four-Wheel	Locomotive	Six-Wheel	Locomotive
tive, Tons	Minimum	Recommended	Minimum	Recommended
3	16	20		
4	16	25		
5	16	25		
· 6	20	30		
7	20	30		
8	25 _	30		
10	30	40	20	30
12	30	45	20	30
13	· 30	50	25	40
15	40	50	30	40
20	50	60	40	50
25	60	70	50	60
30	75	80	60	70

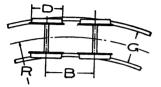
For Locomotives with Four or Six Wheels

The table is based approximately upon the allowance of 10 pounds of rail weight per yard, per ton of locomotive weight on each driving wheel, for minimum rail section. For example, the minimum rail weight for a 10-ton 4-wheel locomotive is $10 \times 10 \div 4 = 25$ pounds per yard

The table values are approximate only, as the proper size or weight of rail must be determined with due consideration also of the nature of the roadbed, the spacing of the ties, the gener construction and the horsepower of the motors.

Elevation of Outer Rail at Curves For 36-Inch Track Gauge

				Speed	l, Miles p	er Hour			
Radius of	4	5	6	8	10	12	15	20	30
Curve, Feet			E	levation	of Outer	Rail, In	ches		
8	4.81	7.48							
10	3.85	5.99	8.54						••••
12	3.22	4.99	7.11	12.74					
14	2.75		6.09	10.96					· · · · .
16	2.40		5.31	9.49	14.07				
18	2.14	3.33	4.75	8.47	13.34	• • • • • •		•••••	••••
20	1.92	2.99	4.27	7.70	12.00				
	1.54	2.39	3.42	6.13	9.59	13.80			
30	1.30	2.00	2.84	5.10	8.00	11.46			
35	1.10	1.71	2.43	4.38	6.86	9.85			••••
40	.960	1.51	2.13	3.84	6.00	8.61	13.50		
45	.853	1.33	1.90	3.40	5.32	7.64	11.95		
50		1.19	1.71	3.06	4.80	6.89	10.75		
60	.644	.993	1.42	2.56	4.00	5.75	9.00	•••••	· · · · ·
80	.479	.751	1.06	1.93	3.00	4.32	6.75	11.95	
100	.385	.598	.854	1.53	2.40	3.44	5.39	9.55	
150		.399		1.03	1.60	2.30	3.60	6.37	12.30
200		.300	.427	.765	1.21	1.72	2.70	4.78	10.75
300			.284	.511	.800	1.15	1.80	3.18	7.20
400				.384	.600	.860	1.35	2.39	5.38
500					.480	.687	1.08	1.91	4.31
1000	1						.269	.478	1.08


The above values are for 36-inch gauge.

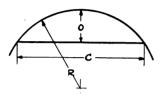
For any other gauge, multiply the value in the table by that gauge and divide by 36.

EXAMPLE.—How much higher should the outer rail be on a 42-inch gauge track if the radius of the curve is 45 ft. and the locomotive is to round the curve at 8 miles per hour?

Sol DTION.—The table gives the elevation 3.40 in. for 36-inch gauge. Hence for 42-inch gauge the elevation should be 42×3.40 + 36 = 3.97, or 4 inches.

Minimum Radius of Curve

For Operation of Locomotives with Given Wheel Sizes and Wheel Bases


Assuming that the gauge (G) is increased the proper amount at curves, usually about one inch.

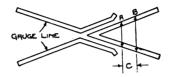
Wheel		Dian	neter of W	heel, Inche	s—D	
Base,	18	20	24	30	33	36
Inches, B		Minim	um Radius	of Curve,	Feet—R	.
201/2	8	8				
24	8 8 9 9	8				
24 3⁄4	8	9	10			
27 1/4	9	10	11			
30	9	11	12			
32	10	12	13	14		
34	11	12	14	15	16	
36	11	13	15	16	17	17
38	12	13	15	17	18	18
40	13	14	16	17	18	19
42	14	15	17	18	19	20
44	14	16	17	19	20	21
46	15	17	18	19	21	21
. 48	16	18	19	20	22	22
50	16	18	20	21	23	23
52	17	19	20	22	24	24
54	17	19	21	23	25	25
56	18	20	22	24	26	26
58	19	20	23	25	27	27
60	19	21	23	25	28	28
62	20	21	24	26	29	29
64	20	22	25	27	29	30
66	21	22	25	28	29 29 30 31 3	29 30 30 30
68	22	23	26	29	\ 31	
70	22	24	27	\ 30	\ 3	r / ,

_

Curvature of Track Rails

Middle ordinates for curves of various radii, on chords of various lengths.

 $R = 36 C^{2} + O^{2} \div 24 O$ wherein


R = Radius of curvature in feet

C = Length of chord in feet

O = Middle ordinate in inches.

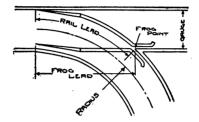
			Length	of Chord	(C), Feet		
Radius (R) Feet	5	10	15	20	25	30	50
		Heigh	nt of Mie	ddle Ordin	ate (O), In	ches	<u> </u>
4 5 6 7 8	10.53 8.04 6.55 5.54	32.20 25.21	 	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
9 10 12 15 20	4.81 4.25 3.81 3.16 2.52 1.88	21.06 18.20 16.08 13.19 10.29 7.62	48.30 40.63 31.64 24.12	120.00 64.40 45.84	80.50	 180.00 81.25	· · · · · · · · · · · · · · · · · · ·
25 30 50 75 100	1.40 1.25 .75	6.06 5.04 3.01 2.00 1.50	13.82 11.43 6.79 4.51	25.05 2059 12.12 8.04	40.19 32.74 19.05	60.00 48.23 27.64 18.18 13.58	300.00 161.00 80.39 51.47 38.10
125 150 200 250 500	· · · · · · · · ·	1.20 1.00 .75 .60 .30		4.81 4.00 3.00 2.40 1.20	4.69	10.84 9.02 6.76 5.40 2.70	30.31 25.18 18.82 15.04 7.50
750 1000	 	. 20 . 15	. 4 5 . 34	.80 .60		1.80 1.35	5.00 3.75

Frogs and Switches

1. Frog Number

The number of a frog is determined by the degree of its spread —the angle at which the gauge lines cross.

The number of inches in which the spread of the gauge lines increases one inch is assigned as the number of the frog. Hence:


To find the Number of any Frog: Measure across the frog point at a place (A) where the distance between the gauge lines is even inches or some convenient fraction; measure again where the distance is an inch greater (B) than at A; the number of inches (C) between the two measurements (A and B) is the number of the frog.

EXAMPLE— Measurement at A=2 inches; at B=3 inches; distance C=2 inches. Then the frog is a No. 2.

Frog No.	Spread per foot, Inches	Frog Angle	Frog No.	Spread per foot, Inches	Frog Angle
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \\ 4 \end{array} $	12.00 9.60 8.00 6.86	53° 8″ 43° 36″ 36° 52″ 31° 54″	$3 \\ 3^{1}_{4} \\ 3^{1}_{2} \\ 3^{3}_{4}$	4.00 3.69 3.43 3.20	18° 55″ 17° 30″ 16° 16″ 15° 11″
$2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \\ 2\frac{3}{4} \\ 3\frac{1}{4} \\ 3\frac{1}$	6.00 5.33 4.80 4.36	28° 4″ 25° 3″ 22° 37″ 20° 37″	$ \begin{array}{c} 4 \\ 4^{1}_{4} \\ 4^{1}_{2} \\ 5 \end{array} $	3.00 2.82 2.61 2.49	14° 15″ 13° 25″ 12° 41″ 11° 2′

Frog Spreads and Angles

Frogs and Switches-Continued

2. Frog Lead-Straight Rail

(Table, Page 48)

Frog lead is the distance from switch point to frog point, measured along the straight track.

It is equal to twice the track gauge, multiplied by the frog number. Since frog lead is usually wanted in feet, while gauge is usually expressed in inches, the formula becomes:

$$L=G \times N \div 6$$

wherein

46

L = Frog lead in feet.

G = Track gauge in inches.

N = Number of frog.

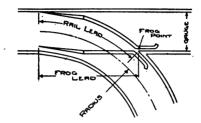
EXAMPLE—Track gauge, 36 in.; frog No. 2. Then

Frog lead = $36 \times 2 \div 6 = 12$ ft.

3. Rail Lead-Curved Rail

(Illustration above. Table, page 49)

The length of curved rail from switch point to frog point, corresponding to the frog lead for a given track gauge, is given with close approximation by the formula:


$$C = (VG^2 + 144L^2 - 3L) \div 9$$

IJ

wherein, C = Curved rail lead in feet. G = Track gauge in inches. L = Frog lead in feet.

EXAMPLE—Track gauge 30 in.; frog lead 12 ft. Then Curved rail lead = $(\sqrt{900 + (144 \times 144)} - 36) \div 9$ = 12.34 ft. = 12 ft. 4 in.

Frogs and Switches-Continued

4. Radius of Curve

For a Given Gauge and Frog

(Table, page 50)

The radius of curvature, measured at center line of track, is equal to twice the track gauge multiplied by the square of the frog number. To get radius in feet, using track gauge in inches, the formula is:

$$R = G \times N^2 \div 6$$

wherein,

 $\mathbf{R} = \mathbf{R}$ adius of curve in feet.

G = Track gauge in inches.

N = Number of frog.

EXAMPLE—Track gauge 36 in.; frog No. 2. Then Radius = $36 \times 4 \div 6 = 24$ ft.

5. Frog to Use

(Illustration above, Table, page 51)

Transposing the radius formula above we have for frog number:

$$N^2 = 6 \times R \div G$$

EXAMPLE-Track gauge, 36 in.; radius of curve, 24 ft. Then

$$N^{2} = 6 \times 24 \div 36 = 4$$

and
$$N = 2$$

7		42 44 48 561/2		7' 0" 7' 4" 8' 0" 9' 5" 8' 0" 0' 7" 10' 0" 11' 0.5"	6" 11' 0" 12' 0"	3" 12'10" 14' 0" 16'	0" 14' 8" 16' 0"	15' 9" 16' 6" 18' 0" 21' 21 4 "	6" 18' 4" 20' 0"	3" 20' 2" 22' 0"	0" 22'. 0" 24' 0"		6" 25' 8" 28' 0"	3" 27' 6" 30' 0"	0" 29' 4" 32' 0" 37'	9" 31' 2" 34' 0" 40'	31' 6" 33' 0" 36' 0" 42' 435"	0" 36' 8" 40' 0" 47'	•			
e 46)		40		6' 8" 8' 4"				15' 0"			20' 0"	21'8"					30, 0,					
gs and Switches-Continued 2. Frog Lead Lengths (Formula and Illustration, page 46)	es	36	nches	، در ور 0،	0, 6	10′ 6″		13′6″			18' 0"	°,	Ъ	6"	ъ	\$	27' 0"	δ				
witch Lead L Illustrat	Track Gauge, Inches	30	g Lead, Feet and I	Frog Lead, Feet and Inches	g Lead, Feet and I	g Lead, Feet and I	5' 0" 6' 3"				11' 3"			15' 0"						22' 6"		
nd S Frog	Frack Ga	28 [.]					g Lead, F	4' 8" 5'10"	7, 0"	8′2″		10' 6"		12'10"	14' 0"	15' 2"			18' 8"			4"
Frogs al		26	Frog	4' 4" 5' 5"			8, 8"	9, 9 "	10'10"	11'11"	ò	1,	5,		4"	s,		8"				
Fre		24		4, 0, 2, 0,				o, 0			12' 0"					5	5	ъ				
		22		3' 8"				8' 3"			11' 0"	11'11"	12'10"	13′9″			16' 6"					
		C2		3' 4" 4' 7"	2, 0,	5'10"		7' 6"			10' 0"	10'10"	11'8"	12′ 6″		14' 2"		16' 8"				
-	 	2 N 80.		1 3' 0' 1½ 3' 0'		ò		214 6' 9"	2		o, 0,	3 0' 9"	, ò	34 11' 3"	12'	12	4 16 31 6"		~ 			

- ---

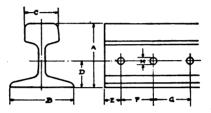
			8 5634	-	3" 7' 355" 0" 8' 634" 134" 10' 734" 13' 254"	83%" 15'113%" 73%" 18' 9" 5" 21' 73%" 43%" 24' 63%"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39' 3" 39' 4% 42' 2½" 42' 4% 42' 3½"						
			48		6/ 10/ 1 10/ 1 12/10	15' 118' 1 21' 6 24' 4	727' 30' 1 33' 1	39' 3" 42' 2 <u>}</u>						
			44		5' 7" 5' 945" 6' 3" 7' 3%" 7' 545" 7' 10" 9' 11 1%" 10' 11 12' 73%" 12' 845" 12' 10"	15'7 <u>%</u> 18'5 <u>%</u> 21'5 <u>%</u> 24'4 <u>%</u>	27' 3½ 30' 3¼ 33' 3" 36' 2"							
			42		1 314" 1 314" 0'1014"	5' 634" 3' 5" 1' 414" 1' 334"	1' 3 <u>14</u> ")' 2 <u>15</u> " 3' 2 <u>15</u> "							
3. Curved Rail Lead Lenothe	(9)		40		5' 4½" 5' 7" 5' 9½" 6' 3" 7' 1%" 7' 3½" 7' 5' 9½" 6' 3" 9' 9½" 9'10½" 9'11½" 10' 1½" 12' 7" 12' 7¾" 12' 8½" 12'10"	6 ½" 15 4 ½" 18 4 ½ " 21 3 ½" 21	3" 21 214 30 2" 33							
enoth	page 4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	et	6'11'% 5' 4'% 6'11'% 7' 1'3% 9' 7'5" 9' 9'% 12' 5% 12' 7" 1	134" 15' 134" 18' 14" 21' 14" 24'	234" 27' 154" 30' 33'							
I per	ıtion,	Track Gauge, Inches	36	Curved Rail Lead, Feet	5, C 6/11 12' 5	15' 4 15' 4 18' 3 21' 3 24' 3	30' 2							
ail L	llustra	Gauge,	30	Rail Le	4' 5 <u>'</u> 6' 7 <u>'</u> 9' 5" 12' 4"	15' 3 <u>4</u> 18' 2% 21' 2 <u>4</u> ' 2 <u>4</u> '								
ved R	and I	Track	28	urved	r' 3" 5' 6 ½" 0' 4 ½"	5' 3" 8' 2 ½" 1' 2"								
3. Curved Rail Lead Lengths	(Formula and Illustration, page 46)		26		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21/2 21/2 21/2 2 2 2 2 2 2								
	Ē								24		1" 4 4 % 6 3 " 2 ½ " 12'	2" 15 2" 18 134 21		
							¥. 3'1 Уб. 6' Қ. 12'	34" 15' 34" 18' 21'						
			22		12, 2 4, 9 12, 2 4, 9	15' 1 18' 1	· · · · ·							
			20		3' 7½ 6' 3½ 9' 2" 12' 2"	15' 1½ 18' 1½ 								
			18		3' 5%" 6' 3" 0' 1%" 2' 1%"	5, 1,4."								
		'pı	Peet Peet w	er4	3 5% 3' 715" 6 6' 3" 6' 315" 9 9' 13% 9' 2" 12' 134" 12' 2" 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24 27 30	30						

126 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Frogs and Switches–Continued 4. Radius of Curve (Formula and Illustration, page 47) Track Gauge, Inches	20 22 24 26 28 30 36 40 42 44 48 56/5	Radius of Curve, Center of Track, Peet	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53' 4" 58' 8" 64' 0" 69' 3" 74' 8" 80' 0" 96' 0" 106'8" 112'0" 117'4" 128'0" 150'8" 60' 3" 66' 3" 72' 3" 78' 3¥" 89' 354" 90' 34''108'45''120'5' 126'5'4" 133'55'' 144'6" 170'1" 60' 3" 65' 57' 5" 74' 3" 81' 0" 87' 9" 94' 5" 101'3" 121'6" 133'0" 144'6" 162'0" 190'8'A" 83' 4" 91' 8" 100'0" 108'3" 116'8" 125'0" 150'0" 150'0" 150'0" 150'0" 155'5" 155'0" 155'5"
5 4 4 3 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20		3' 4" 5' 2] 10' 23	13' 4" 16'10 <u>}</u> 20'10 <u>}</u> 25' 2 <u>}</u>	35' 0" 46' 9"	53' 4" 60' 3" 63' 4" 83' 4"

Frogs and Switches-Continued

5. Frog to Use

For a Given Gauge and Radius


(Formula and Illustration, page 47)

Radius		Track Gauge, Inches													
of Curve, Feet	18	20	22	24	26	28	30	36	40	42	44	48	564		
reet		No. of Frog to Use													
5 6 7 8	$ \begin{array}{r} 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{3}{4} \\ \end{array} $	$1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{2}$	$1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{2}$	$1 \\ 1\frac{1}{4} \\ 1\frac{1}$	$1 \\ 1\frac{1}{4} \\ 1\frac{1}$	$1 \\ 1 \\ 1\frac{1}{4} \\ 1\frac{1}{4}$	1 1 1 1 ¹ / ₄	1 1 1 1	1 1 1	1 1 1	i 1 1	1		
9 10 12 14	$ \begin{array}{r} 13/4 \\ 13/4 \\ 2 \\ 21/4 \\ \end{array} $	13/4 13/4 2 2	$1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$ 2	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$	$ \begin{array}{r} 1 \frac{1}{4} \\ 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 1 \frac{3}{4} \end{array} $	$\frac{1\frac{1}{4}}{1\frac{1}{4}}$	$\frac{1\frac{1}{4}}{1\frac{1}{4}}$	$\frac{1\frac{1}{4}}{1\frac{1}{4}}$	$1 \\ 1\frac{1}{4} \\ 1\frac{1}{4} \\ 1\frac{1}{2}$	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \end{array} $		
16 18 20 22	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	21/4 21/4 21/2	2 2¼ 2¼ 2¼ 2¼	2 2 2 ¹ ⁄ ₄ 2 ¹ ⁄ ₄	$ \begin{array}{r} 13/4 \\ 2 \\ 2 \\ 21/4 \end{array} $	13/4 2 2 2	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ 2	$1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$	$\begin{array}{c}1\frac{1}{4}\\1\frac{1}{2}\\1\frac{1}{2}\\1\frac{1}{2}\\1\frac{1}{2}\end{array}$		
24 26 28 30	23/4 3 3 31/4	23/4 23/4 3 3	21/2 23/4 23/4 3	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$ $2\frac{3}{4}$	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{2}$	$2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ $	2 2 2 2 ¹ ⁄ ₄	13/4 2 2 2	13⁄4 2 2 2	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ 2	$1\frac{1}{2}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$		
32 36 40 44	31/4 31/2 33/4 38/4	3 31/4 31/2 38/4	3 3 3 1/4 3 1/2	23/4 31/4 31/4	23/4 3 3 3 ¹ /4	23/4	21/2 23/4 23/4 3	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{2}$	$2 \\ 2 \\ 2 \\ 1/4 \\ 2 \\ 1/2 \\ 2 \\ 1/$	$2^{2}_{2^{1/4}}_{2^{1/4}}$	13/4 2 2 21/4		
48 54 60 66	4 4 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄	33/4 4 41/4 41/2	$3\frac{1}{2}$ $3\frac{3}{4}$ 4 $4\frac{1}{4}$	31/2 33/4 33/4 4	$3\frac{1}{4}$ $3\frac{1}{2}$ $3\frac{3}{4}$ 4	$3\frac{1}{4}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{3}{4}$	$ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 $	$2\frac{3}{4}$ 3 $3\frac{1}{4}$ $3\frac{1}{2}$	$2\frac{3}{4}$ $2\frac{3}{4}$ $3\frac{1}{4}$	$2\frac{1}{2}$ $2\frac{3}{4}$ 3 3	$2\frac{1}{2}$ $2\frac{3}{4}$ $2\frac{3}{4}$ 3	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$ $2\frac{3}{4}$	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{4}$		
72 78 84 90	5 5 5 5 4 5 1/2	$4^{3/4}_{4^{3/4}}_{5^{5^{1/4}}}$	$4\frac{1}{2}$ $4\frac{3}{4}$ $4\frac{3}{4}$ 5	$\begin{array}{r} 4\frac{1}{4} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{3}{4} \end{array}$	4 41/4 41/4 41/	4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	33/4	33	31/4	31/4	31/231	333	23/		

Dimensions of

Rail Sections and Drilling

A. S. C. E. Standard

Rail, Weight,		Weight of Single									
Pounds		Rail			Drilling*						
Yard	A	В	С	D	E	F	н	Tons per 1000 Feet			
8	11/2	1½	18	79/128	2	4	3⁄4	2.67			
12	11/8	11/8	11	101/1 28	2	4	3⁄4	3.67			
16	21⁄4	21/4	11/4	1 3/128	2	4	3⁄4	5.33			
20	21/2	21/2	1 3/8	1 15/128	2	4	34	6.67			
25	23/4	23/4	1½	1 29/128	2	4	3⁄4	8.33			
30	3	3	15/8	1 43/128	2	4	3⁄4	10.0			
35	31/4	31/4	13⁄4	1 57/128	2	4	3⁄4	11.66			
40	31⁄2	31⁄2	11/8	1 ⁿ / ₁₂₈	2	4	1/8	13.33			
45	3 11	311	2	1#1	2	4	⅔	15.00			
50	37/8	31/8	2 <mark>1⁄8</mark>	122	27	5	1/8	16.66			
55	41	$4\frac{1}{16}$	21⁄4	1101/128	218	5	1/8	18.33			
60	41⁄4	41/4	2 ³ ⁄8	1115/128	23/8	5	1	20.00			
65	416	47	2]]	1#3	23/8	5	1	21.66			
70	458	45%	21	23	23/8	5	1	23.33			

*Rails 65 lbs. and lighter have only two holes; hence no dimension Q. For 70-lb. rail, G = F = 5 is.

Rails, Splices, Bolts and Spikes Per 1,000 Feet of Single Track

Rail	Number	Number	Number of Bolts			
Length,	of	of	4 per	6 per		
Feet	Rails	Splices	Joint	Joint		
18	111	222	888	1332		
20	100	200	800	1200		
22	91	182	728	1092		
25	80	160	640	960		
27	74	148	592	888		
30	67	134	536	804		

Rails, Splices and Bolts

Spikes

Ties Spaced 2 ft. on Centers; 4 Spikes per Tie.

Spike Size Under Head,	Average Number per Keg		per 1000 ingle Track	Rail Weights, Pounds		
Inches	of 200 pounds	Pounds	Kegs	per Yard		
2 ¹ /2x ³ /8	1650	243	$ \begin{array}{r} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \\ 2 \end{array} $	12 to 16		
3 x ³ /8	1380	295		16 to 20		
3 ¹ /2x ³ /8	1250	325		16 to 20		
4 x ³ /8	1025	395		16 to 25		
3 ¹ /2x 1 4 x 1 4 x 1 4 4 x 1 5	890 780 690	455 515 585	23/8 25/8 3	16 to 25 20 to 30 20 to 30		
$\begin{array}{c} 4 & x_{12}^{1} \\ 4_{12}^{1} x_{12}^{1} \\ 5 & x_{12}^{1} \end{array}$	605	665	33/8	24 to 35		
	518	775	37/8	28 to 35		
	475	850	41/4	35 to 40		
5 x /z	405	995	55%8	40 to 56		
51/9x /z	360	1120		45 to 70		

Mine Hoisting

The six diagrams on pages 56 to 61 are for use in connection with hoisting engines of direct connected, or first motion type.

1. Rope Speeds. Page 56.

EXAMPLE—What will be the rope speed if the engine stroke is 30 in., the piston speed 800 ft. per minute, and the diameter of the drum 4 ft.?

SOLUTION—Starting at the top of the diagram, at the line for 800 ft. per minute, trace vertically down to the diagonal for 30-in. stroke; thence horizontally to the diagonal for 4-ft. drum; thence vertically down to the bottom, to find the rope speed—2100 ft. per minute.

2. Drum Capacities. Page 57.

EXAMPLE—How many feet of $\frac{3}{4}$ -in. rope will wind in one layer on a 6-ft. cylindrical drum with a 2-ft. ungrooved face?

SOLUTION—Starting at the top of the diagram, at the line for 6-ft. drum diameter, trace vertically down to the diagonal for ¾-in. rope; thence horizontally to the diagonal for 2-ft. face; thence vertically down to the bottom, to find the length of rope—590 ft.

3. Ropes in Multiple Layers. Page 58.

EXAMPLE—What length and weight of 1-in. rope will there be in 3 layers on a 9-ft. drum having a 2-ft. face?

SOLUTION—Starting at the top of the diagram, at the line for 9-ft. drum diameter, trace vertically down to the diagonal for 1-in. rope; thence horizontally to the diagonal for 3 layers; and thence vertically down to the center of the diagram, to find the length of rope—1000 ft. per foot of face, which, multiplied by the face width in feet, gives 2000 ft. Continuing vertically down to the diagonal for 1-in. rope, and thence horizontally to the right, the weight will be found—1600 lb. per foot of face, or 3200 lbs. for the 2-ft. face.

Mine Hoisting-Continued

4. Load Capacities. Page 59.

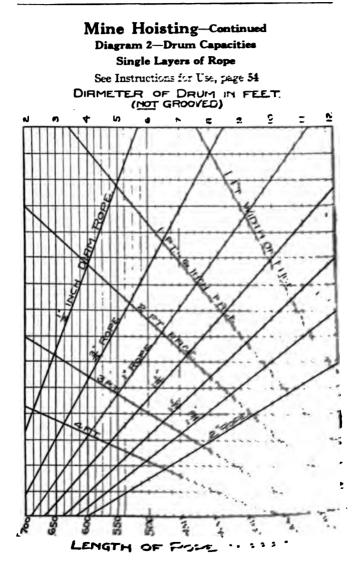
EXAMPLE—What vertical unbalanced load can a 28×36 in. engine handle, if it has a 6-ft. drum, and is running on 80 lbs. steam pressure?

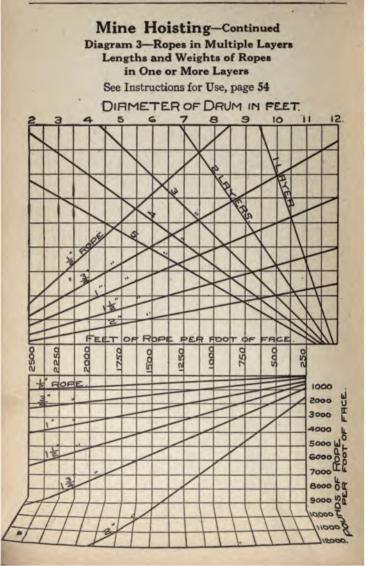
SOLUTION—Starting at the top of the diagram, at the line for 28-in. cylinder diameter, trace vertically down to the diagonal for 36-in. stroke; thence horizontally to the diagonal for 80 lbs. steam; thence vertically down to the curve for 6-ft. drum diameter; and thence horizontally to the left side, to find the vertical unbalanced load—14,200 lbs.

5. Rates of Hoisting. Page 60.

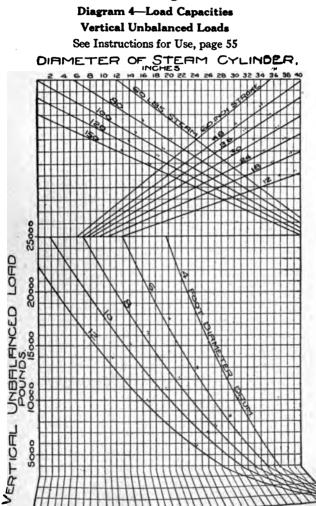
EXAMPLE—How many cars per hour can be handled in a shaft 600 ft. deep, if the average speed of the rope is 1500 ft. per minute and the time required to change or dump cars is 25 seconds?

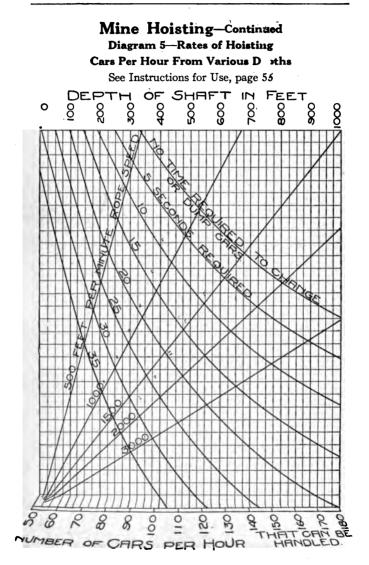
SOLUTION—Starting at the top of the diagram, at the line for 600 ft. shaft depth, trace vertically down to the straight diagonal for 1500-ft. rope speed; thence horizontally to the curved diagonal for 25 seconds; and thence to the bottom to find the capacity—74 cars per hour.


6. Hoisting on Inclines. Page 61.

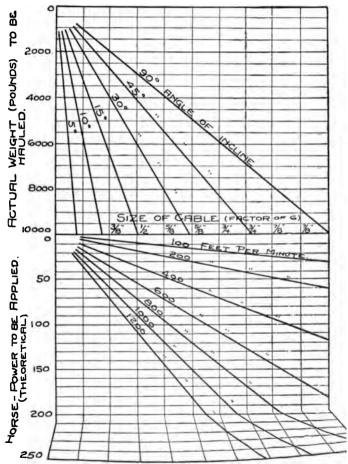

EXAMPLE—What size of rope should be used and what horsepower will be required, to haul 6000 lbs. up a 45° incline at the rate of 600 ft. per minute?

SOLUTION—Starting at the upper left side of the diagram, at the line for 6000 lbs., trace horizontally to the right to the diagonal for 45° incline; thence vertically down to the center of the diagram, to find the rope size— $\frac{5}{8}$ -in. diameter. Continuing vertically down to the diagonal for 600 ft. speed, and thence horizontally to the left side, the theoretical power required will be found—80 hp.


For the actual horsepower an additional allowance of about 25 percent must be made, for friction, etc. Hence in the present example the actual horsepower will be 80+20=100 hp.


Mine Hoisting-Continued Diagram 1-Rope Speeds Engine Speeds and Drum Diameters See Instructions for Use, page 54 ON SPEED, FEET Pi0 00 00 PER MITI 2002 9006 002 STRO 70 D 3 0° 10 PER MINUTE. ET

Mine Hoisting-Continued



Mine Hoisting—Continued Diagram 6—Hoisting on Inclines Rope Sizes and Power Required

:

See Instructions for Use, page 55

1 83		2 1/5		Theo. Actu.	5.9 8.9 7.8 11.9 10.0 15.1 11.8 17.8 15.7 23.7	19.6 29.7 23.6 35.7 31.5 41.0 35.5 53.0	40.0 60.7 49.0 74.2 59.0 89.2 79.0 120.0 98.0 148.2	118.0 178.5 138.0 209.0 157.0 238.0 175.0 265.0							
Horsepower Required in Moving Air Pheoretical and Actual Powers for Various Rates of Flow, Under Different Pressures. Efficiency of Fan taken at 65 to 70 percent.		3		Actu.	7.1 9.4 12.1 14.2 19.5	23.8 28.5 33.0 37.9 42.5	48.5 60.7 71.1 95.2 120.0	142.2 167.0 191.0 214.0							
ir Differen				Theo.	4.7 6.2 8.0 9.4 12.6	15.7 18.8 22.0 28.0 28.0	32.0 40.0 63.0	94.0 110.0 126.0 141.0							
Horsepower Required in Moving Air Actual Powers for Various Rates of Flow, Under Diff. Efficiency of Fan taken at 65 to 70 percent.	52	s	S	83	8	y,	8	es		-a	Actu.	5.2 7.0 8.8 10.4	17.4 20.8 24.5 31.2 31.2	35.3 44.1 53.0 68.0 86.8	104.0 120.0 140.0 156.0
Movi Now, U 70 perc	-Inche	11	nd Actu	Theo.	3.5 6.0 9.5	11.8 14.2 19.0 21.2	24.0 30.0 36.0 59.0	71.0 83.0 95.0 106.0							
sepower Required in Moving al Powers for Various Rates of Flow, Unde Efficiency of Fan taken at 65 to 70 percent.	Pressure by Water Gauge—Inches		Horsepowers-Theoretical and Actual	Actu.	4.1 5.7 7.3 8.2 11.5	14.4 16.4 20.2 23.1 25.6	29.5 36.8 44.1 58.8 71.8	86.2 100.5 113.0 130.0							
uired us Rat ken at	by Wate	1 X	s-Theo	Theo.	7.8437. 9.9999	9.8 11.8 13.7 15.7	20.0 25.0 40.0 48.8	58.7 68.7 78.8 88.5							
Kequ r Vario Fan ta	ressure		sepower	Actu. 3.5 4.6	9.5 8.6 0.0 0.0	11.6 14.0 18.5 20.5	23.5 29.4 35.3 57.2	69.0 80.8 92.8 104.0							
WET VERS for			Hoi	Theo.	2.3 6.4 9.6 9.6 9.9	7.9 9.5 11.0 14.2	16.0 20.0 32.0 39.0	47.0 55.0 63.0 71.0							
sepo tal Pov Efficien				Actu.	2.5 6.4 0.0 0.1 0	8.4 10.1 11.6 13.4 15.2	17.2 21.4 25.7 34.3 42.0	50.0 59.0 67.5 75.1							
Hor nd Acti			%		Theo.	1.7 3.0 4.4	5.9 7.1 10.3	12.0 15.0 24.0 29.3	35.2 41.2 53.0 53.0						
tical a		x		Actu.	4.22856	5.5 6.7 7.8 9.0	11.4 14.3 22.9 27.9	33.7 39.3 45.0 50.9							
Theore		*		Theo.	1.1 3.3 3.3 3.3	8.3 7.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	8.0 10.0 15.0	23.5 27.5 31.5 35.5							
		Pre Pre	Minute		15,000 25,000 30,000 40,000	80,000 80,000 90,00000000	000000000000000000000000000000000000000	00000 00000 00000 00000 00000							

.

Humidifying Mine Air

To Prevent Coal Dust Explosions

Investigations during the last few years, particularly by the U. S. Bureau of Mines, have brought out the rather surprising fact that, practically regardless of the relative humidity of the ventilating air at the intake, or of the temperature conditions, the relative humidity of the mine ventilating current when discharged from the mine varies from 80% to 100% and is usually over 90%.

The following table summarizes 48 tests that were made, and shows that for every 100,000 cubic feet of air circulated per minute, an average of 5,657 gallons of water is extracted from the mine by the ventilating current every 24 hours.

State	Num- ber of Mines	Num- ber of Ob- ser-	Air Tempera- ture, Degrees F.		Hum	ative idity, Cent	Water Extracted, Gallons		
		va- tions	In- take	Re- turn	In- take	Re- turn	Ext Gr 100,000 Cu. Ft. 2.27 4.70 4.44 4.57 9.02 2.30	Per 24 Hours	
Alabama Iowa	53	53	71 46.5		72.5	93	4.70	3,269 6,768	
Illinois New Mexico	89	11 14	45.5 36	58 53	60.5 57	91 82		6,394 6,432	
Colorado	1	14	72	70	18	85		12,991	
West Virginia.	9	9	58.5		63	94	2.30	3,341	
Virginia	1	1	49	57	84	95.5	3.04	4,378	
Pennsylvania.	1	4	48	49	87	91	1.17	1,685	
Total	39	48		-				1	
Average			53	58.5	63	90.5	3.94	5,657	

Extract from Bureau of Mines Bulletin, No. 20

A review of analyses of American coals shows that the normal moisture content of green bituminous coal varies from $2^{\circ/1}$ to 15%.

In tests made by the Bureau of Mines, coal dust has been exploded without the assistance of any gas, when the percentage of moisture was as high as 20%, but samples of dust which contain from 29% to 31% moisture could not be exploded. It would seem from these tests that if explosive coal dust is to be made safe by dampening or wetting, its moisture content should be increased from that of green bituminous coal, which normally varies from 2% to 15%, till it reaches at least 30%.

Since this is a known fact, and since coal dust is constantly being produced in the mine by blasting, shoveling, hauling, etc., various methods have been devised to keep the coal dust from being dangerous.

Following are some of the methods:

1. Loading and cleaning up such coal dust as can be reached, which is obviously a necessity. However, it is impossible to get at large quantities lodged on timbers and in crevices at remote points.

2. Sprinkling from water cars, or with a hose and nozzle, or with a permanent system of sprinklers. This, however, is only local in its effect, and will not reach the crevices, nor points which are remote from the tracks.

3. Application of calcium chloride or other deliquescent salt. This is also more or less local in its effect.

4. Coating the walls and floors of the passageways with rock dust, or placing such dust on easily overturned shelves, to confine the explosion within certain zones in the mine.

5. Adding moisture to the mine air. This is advisable if roof and other conditions permit, as it effectively reaches every part of the mine.

Air has the ability to hold a certain amount of invisible moisture in suspension. The higher the temperature of the air, the greater is the amount it will hold. When the air is carrying all of the invisible moisture it can, the condition is mown as saturation.

The ratio of the amount of invisible moisture that is in the air at any temperature, to the maximum amount of invisible moisture it will carry when saturated at that temperature, expressed in percentage, is known as the relative humidity of the air. The Relative Humidity table on page 68 shows the amount of water the air will carry at any given temperature. Therefore, if the temperature of saturated air is lowered, a certain amount of the moisture that was invisible, becomes visible in the form of fog, vapor, or rain, and is deposited on any surface with which the air may come in contact.

In warm weather, when the relative humidity of the outside air is high and its temperature is lowered on entering the mine, the surplus moisture is deposited along the cooler walls of the mine, the process being known as sweating.

In cold weather, cool air enters the mine with a comparatively small percentage of moisture, but, warmed by the walls of the mine, the air develops a strong affinity for moisture, and abstracts it from the coal and other surfaces in the mine. It has been shown by the observations summarized in the foregoing table from the Bureau of Mines Bulletin that the air in this way will abstract enough moisture to reach a relative humidity of between 80% and 100% by the time it leaves the mine. This indicates the extreme power of cool mine air to dry up the dust.

Saturating the cold air at the intake does not remedy this evil, for as the air warms on encountering the warmer walls of the mine, its capacity for moisture increases, and it abstracts more from the surfaces with which it comes in contact.

Frequent saturation of the air along the passageway's as it becomes warm will not render the explosive coal dust safe, because saturating such air at all parts of the mine simply prevents it from abstracting moisture from the coal dust and does not cause it to add moisture to the coal dust.

GOODMAN MINING HANDBOOK

The only way, therefore, that the air current can deliver moisture to the coal dust when the air is cooler than the mine, is by being frequently moistened beyond the point of saturation, or "fogged" as it traverses the mine, so that the current carries in suspension in the form of steam, fog, or vapor a certain amount of moisture in addition to the invisible moisture required for saturation, this excess to be deposited upon the walls of the mine and on the dust. The moisture thus in supension will be carried for long distances, because kept in floatation by the mechanical agitation of the air currents.

The exhaust steam from a fan is often used at the intake to accomplish this purpose, but the steam is injurious to many mine roofs and cannot always be used. Water sprayers, water jets operating under pressure, and driving water into the air in a finely divided state by centrifugal fans, are methods by which the super-saturated condition of the air is effected.

In order to be considered safe, the coal dust should be so damp that it sticks together when pressed in the hand. To be so damp as this, the dust must contain moisture to the extent of at least one-third its own weight.

The quantity of water that should be introduced into the air to nullify the tendency to dry out the mine can be calculated as follows:

Let A = Volume of air calculated, cu. ft. per minute.

- T = Temperature of intake air, degrees Fahr.
- t = Temperature of outlet air, degrees Fahr.
- H = Relative humidity of intake air, per cent.
- h = Relative humidity of outlet air, per cent (nearly always close to 90%).
- I = Quantity of water in intake air, gallons per 100,000 cu. ft.

- Let R = Quantity of water in return air, gallons per 100,000 cu. ft.
 - **W** = Quantity of water to be added to neutralize drying tendency of Volume A of air as it warms in passing through the mine, gallons per minute.
 - Then I is given by table on page 69, for temperature T and relative humidity H.
 - R is given by table on page 69, for temperature t and relative humidity h.

And $W = (R-I) \times (A \div 100,000)$

= theoretical quantity of water to be added. Actually this must be increased by at least 20% to allow for failure of the air to take up all the moisture from the sprayers or jets.

EXAMPLE—What quantity of water must be added to neutralize the drying tendency of an air current of 85,000 cu. ft. per minute, entering the mine with a temperature of 45° F. and a relative humidity of 70%, and leaving with a temperature averaging 60° F. and the usual relative humidity of 90%?

SOLUTION—The conditions give: A=85,000, T=45, t=60, H=70 and h=90. The table on page 61 gives I=4.092 for T and H, and R=8.859 for t and h.

Then $W = (8.859 - 4.092) \times (85,000 \div 100,000)$ = 4.767 × 0.85 = 4.05195 or 4.05 nearly.

This theoretical must be increased 20% for the actual quantity of water to be added, which gives $4.05 \times 1.20 = 4.86$ gallons per minute, actual.

Then $4.86 \times 60 = 291.6$, or 292 nearly, is the quantity of water in gallons per hour.

The extra quantity required to super-saturate the air so as to add the desired moisture to the coal dust must be determined by trial.

The power required to circulate the ventilating air can be estimated by the use of the table on page 62.

GOODMAN MINING HANDBOOK

Relative Humidity

Percentages of Complete Saturation

By differences between Readings of Wet and Dry Bulb Thermometers.

Differ- ence		Tempe	rature, I	Degrees F	ahrenhei	it		
Between Wet and Dry	32	40	50	60	70	80	90	100
Ther- mometers	F	Relative I	Humidity	7, Per Ce	nt (Baro	meter, 3	0 Inches)
1 2 3 4	89 79 69 59	92 83 75 68	93 87 80 74	94 89 83 78	95 90 86 81	96 91 87 83	96 92 89 85	96 93 89 86
- 5	49	6 0	67	73	77	79	81	83
6 7 8 9 10	39 30 20 11 2	52 45 37 29 23	61 55 49 43 38	68 63 58 53 48	72 68 64 59 55	75 72 68 64 61	78 74 71 68 65	80 77 73 70 68
11 12 13 14 15	· · · · · · · ·	15 7 0	32 27 21 16 11	43 39 34 30 26	51 48 44 40 36	57 54 50 47 44	61 58 55 52 49	65 62 59 56 54
16 17 18 19 20	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5 0 	21 17 13 9 5	33 29 25 22 19	41 38 35 32 29	47 44 41 39 36	51 49 46 44 41
21 22 23 24 <i>26</i>	 		· · · · · · · · · · · · · · · · · · ·	1	15 12 9 6	26 23 20 18 12	34 31 29 26 22	39 37 35 33 28
28 30 .	· · · · ·	· · · · · · · ·			.\ .\	.\ 1	17 13	່ງ

Water in Moist Air

Gallons per 100,000 Cubic Feet of Air, at Various Temperatures and Percentages of Saturation

ure, ahr.				Relati	ive Hum	idity, Pe	er cent		
Temperature, Dégrees Fahr.	20	30	40	50	60	70	80	90	100
Deg			Gallo	ns of Wa	ater Per	100,000	Cu. Ft.	of Air	
-20	.057	.085	.114	.142	.170	.199	.227	.256	.284
-15	.075	.112	.149	.187	.224	.261	.298	.336	.373
-10	.098	.146	.195	.244	.293	.342	.390	.439	.488
-5	.127	.190	.253	.317	.380	.443	.506		.633
0	.165	.247	.329	.412	.494	.576	.658	.741	.823
5	.209	.313	.418	.522	.626	.731	.835	.940	1.044
10	.269	.313	.532	.665	.020	.930	1.063	1.196	
15	.338	.506	.675	.844	1.013	1.182	1.350	1.519	1.688
20	.330	.634	.846	1.057	1.268	1.182	1.691	1.903	2.114
25	.531	.797	1.062	1.328	1.593	1.480	2.124	2.390	2.655
25	.551	.191	1.002	1.520	1.595	1.039	2.124	2.390	2.035
30	.662	.994	1.325	1.656	1.987	2.318	2.650	2.981	3.312
35	.810	1.215	1.620	2.026	2.431	2.836		3.646	
40	.976	1.463	1.951	2.439	2.927	3.415	3.902	4.390	4.878
45	1.169	1.754	1.338	2.923	3.507	4.092	4.676	5.261	5.845
50	1.396	2.094	2.792	3.490	4.187	4.885	5.583	6.281	6.979
55	1.661	2.493	3.322	4.153	4.984				
60	1.969	2.953	3.937		5.906				
65	2.325	3.488	4.650		6.976			10.46	11.63
70	2.737	4.106		6.843	8.212	9.580		12.32	13.69
75	3.211	4.816	6.422	8.027	9.632	11.24	12.84	14.45	16.05
80	3.755	5.633	7.510	9.388	11.27	13.14	15.02	16.90	18.78
85	4.378				13.13		17.51	19.70	21.89
90	5.088		10.18	12.72	15.26		20.35	22.90	25.44
95	5.895			14.74	17.69	20.63			3 29.48
100	6.812		13.62	17.03	20.44				
- · /	1		_ >	1	1	1	-		<u> </u>
				1	1	`			

Compressed Air Pressures

Initial pressures required for delivery of air at 80 pounds gauge pressure through 1000 feet of clean and straight pipe, at various velocities.

Velocity	1-in.	Pipe	1½-i	n. Pipe	2-in	. Pipe
of Flow, Feet per Second	Cu. Ft. Free Air per Min.	Initial Pressure Required	Cu. Ft. Free Air per Min.	Initial Pressure Required	Cu. Ft. Free Air per Min.	Initial Pressure Required
3.07	6	80.337	14	80.134	23	80.100
6.14	12	81.348	29	80.536	47	80.400
9.20	18	83.033	43	81.206	70	80.900
12.27	24	85,392	57	82.144	94	81.600
15.34	30	88.425	72	83.350	118	82.500
18.41	36	92.132	86	84.824	141	83.600
24.54	48	101.568	115	88.576	188	87.200
30.68	60	113.700	144	93.400	235	90.000
~	212-in.	Pipe	3-in. Pipe		4-in	. Pipe
3.07	33	80.058	52	80.050	88	80.031
6.14	67	80.232	104	80.200	176	80.124
9.20	100	80.522	156	80.450	264	80.279
12.27	134	80.928	208	80.800	352	80.495
15.34	168	81.450	260	81.250	440	80.775
18.41	201	82.088	312	81.800	528	81.116
24.54	268	83.712	416	83.200	704	81.984
30.68	335	85.800	520	85.000	880	83.100
	5-in	. Pipe	6-in	. Pipe	8-in	. Pipe
3.07	141	80.022	204	80.018	353	80.011
6.14	282	80.088	408	* 80.072	706	80.044
9,20	423	80.198	612	80.162	1059	80.099
12.27	564	80.352	816	80.288	1412	80 176
15.34	705	80,550	1020	80.450	1765	80.275
18.41	846	80.792	1224	80.648	2118	80.336
24.54	1128	81.408	1632	81.152	2824	80.704
30.68	1410	82.200	2040	81.800	3530	81.100
	10-ir	n. Pipe	12-ii	n. Pipe	14-ir	a. Pipe
3.07	566	80.009	799	80.007	1087	80.006
6.14	1132	80.035	1598	80.027	2174	80.022
9.20	1698	80.078	2397	80.060	3261	80.050
12.37	2264	80.139	3196	80.107	4348	80.088
15.34	2830	80.218	3995	80.168	5435	80.138
8.41	3396	80.313	4794	80.241		80.198
1.54	4528	80.557	6392	80.42		
68	5660	80.870	7990	80.67	0 1 1087	0 80.5

.

Properties of Saturated Steam

	•			
Pressure by Gauge, Lbs. per Sq. In.	Temperature of Steam, Degrees, Fahr.	Total Heat of Steam in B. T. U. above Water at 32° Fahr.	Weight of Steam, Pounds per Cubic Foot	Volume, Cu. Ft. per Pound of Steam
0	212.0	1150.4	.0373	26.79
5.3	228.0	1156.2	.0498	20.08
15.3	250.3	1163.9	.0728	13.74
25.3	267.3	1169.4	.0953	10.49
35.3	281.0	1173.6	.1175	8.51
45.3	292.7	1177.0	.1395	7.17
55.3	302.9	1179.8	.1612	6.20
65.3	312.0	1182.3	.1829	5.47
75.3	320.3	1184.4	.2044	4.89
85.3	327.8	1186.3	.2258	4.429
95.3	335.5	1188.0	.2472	4.047
105.3	341.3	1189.6	.2683	3.726
115.3	347.4	1191.0	.2897	3.452
125.3	353.1	1192.2	.3107	3.219
135.3	358.5	1193.4	.3320	3.012
145.3	363.6	1194.5	.3529	2.834
155.3	340.7	1195.4	.3738	2.675
165.3	345.6	1196.4	.3948	2.533
175.3	350.4	1197.3	.4157	2.406
205.3	363.4	1199.6	.478	2.091
225.3	397.4	1200.9	.520	1.924
255.3	407.9	1202.6	.582	1.718
275.3	414.4	1203.6	.624	1.602
305.3	423.4	1204.9	.687	1.456
325.3	431.9	1206.1	.750	1.372
355.3 385.3 435.3 485.3	437.2 444.8 456.5 467.3	1206.8 1208.0 1209.0 1210.0	.791 .860 .960	1.372 1.264 1.170 1.140 .93

(Marks and Davis)

Standard Wrought Pipe

Di	ameter, Incl		Number	Length	Weight, Pounds	List Price
Nominal	Act	ual	Threads per	Perfect Thread.	per Lineal	per Foot
Inside	Outside	Inside	Inch	Inches	Foot	1.000
1⁄8	.405	. 269	27	. 19	. 24	\$0.051
1/4 3/8 1/2 3/4	.540 .675 .840 1.050	.364 .493 .622 .824	18 18 14 14	.29 .30 .39 .40	.42 .57 .85 1.13	.06 .06 .08 ¹ /2 .11 ¹ /2
$1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 2$	1.315 1.660 1.900 2.375	1.049 1.380 1.610 2.067	$ \begin{array}{r} 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \\ \end{array} $.51 .54 .55 .58	1.68 2.27 2.71 3.65	.17 .23 .27 .37
$2\frac{1}{2}$ 3 $3\frac{1}{2}$ 4	2.875 3.500 4.000 4.500	2.469 3.068 3.548 4.026	8 8 8 8	.89 .95 1.00 1.05	5.79 7.57 9.11 10.79	.581 .761 .92 1.09
4½ 5 6 7	5.000 5.563 6.625 7.625	4.506 5.047 6.065 7.023	8 8 8 8	1.10 1.16 1.26 1.36	12.54 14.61 18.97 23.54	1.27 1.48 1.92 2.38
8 9 10 11	8.625 9.625 10.750 11.750	7.981 8.941 10.020 11.000	8 8 8 8	1.46 1.57 1.68 1.78	28.55 33.91 40.48 45.56	2.88 3.45 4.12 4.63
	12.750 14.000 15.000 6.000	12.000 13.250 14.250 15.250	8 8 8 8	1.88 2.09 2.10 2.20		$ \begin{array}{c c} 5.07 \\ 5.60 \\ 6.10 \\ 8 \\ 6.50 \\ 6.$

Standard Dimensions and List Prices

Extra Strong Wrought Pipe

Standard Dimensions and List Prices

Di	ameter, Inc	hes	Internal	Length	Weight.	List
Nominal	Act	tual	Area, Square Inches	Contain- ing one Cubic	Pounds per Lineal	Price per Foot
Inside	Outside	Inside		Foot, Feet	Foot	
1⁄8	. 405	. 215	.036	3966.39	. 314	\$0.12
1/4 3/8 1/2 3/4	.540 .675	.302 .423	. 141	2010.29 1024.69	. 535	.071/2
· /2 8/4	.840 1.050	. 546 . 742	. 234 . 433		1.087 1.473	.11 .15
$1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 2$	1.315 1.660 1.900 2.375	.957 1.278 1.500 1.939	.719 1.283 1.767 2.953	200.19 112.26 81.49 48.77	2.171 2.996 3.631 5.022	.22 .30 .36 ¹ / ₂ .50 ¹ / ₂
$2\frac{1}{2}$ 3 $3\frac{1}{2}$ 4	2.875 3.500 4.000 4.500	2.323 2.900 3.364 3.826	4.238 6.605 8.888 11.497	33.98 21.80 16.20 12.53	7.661 10.252 12.505 14.983	1.25
4½ 5 6 7	5.000 5.563 6.625 7.625	4.290 4.813 5.761 6.625	14.455 18.194 26.067 34.472	9.96 7.92 5.52 4.18	17.611 20.778 28.573 38.048	2.08 2.86
8 9 10 11	8.625 9.625 10.750 11.750	7.625 8.625 9.750 10.750	45.663 58.426 74.662 90.763	3.15 2.46 1.93 1.59	43.388 48.728 54.735 60.075	4.90 5.48
12	12.750	11.750	108.43	4 1.5	33 65.	415 6.55

Double Extra Strong Wrought Pipe

Di	iameter, Incl	nes	Internal	Length	Weight,	List
Nominal Inside	Ac	tual	Area, Square Inches	Contain- ing one Cubic	Pounds per Lineal	Price per Foot
	Outside	Inside		Foot, Feet	Foot	
1/2 3/4	.840 1.050	. 252 . 434	. 05 0 . 1 4 8	2887.16 973.40	1.714 2.440	\$0.32 .35
$1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 2$	1.315 1.660 1.900 2.375	.599 .896 1.100 1.503	. 282 . 630 . 950 1. 774	511.00 228.38 151.53 81.16	3.659 5.214 6.408 9.029	.37 .52½ .65 .91
$2\frac{1}{2}$ 3 $3\frac{1}{2}$ 4	2.875 3.500 4.000 4.500	1.771 2.300 2.728 3.152	2.464 4.155 5.845 7.803	58.46 34.66 24.64 18.45	13.695 18.583 22.850 27.541	1.37 1.86 2.30 2.76
41⁄2 5 6 7	5.000 5.563 6.625 7.625	3.580 4.063 4.897 5.875	10.066 12.966 18.835 27.109	14.31 11.11 7.65 5.31	32.530 38.552 53.160 63.079	3.26 3.86 5.32 6.35
8	8.625	6.875	37.122	3.88	72.424	7.25

Standard Dimensions and List Prices

Round Cisterns, Tanks, Pipes, Etc. Areas and Capacities in U. S. Gallons per Foot of Depth for Various Diameters

Area, Sq. Ft.	Gallons per Ft. Depth	Diam., Ft.—In.	Area, Sq. Ft.	Gallons per Ft. Depth	Diam., Ft.—In.	Area, Sq. Ft.	Gallons per Ft. Depth
. 0003 . 0008	.0025 .0057	1-2 1-4	1.396	10.44	11-0 11-6	95.0 103.9	71 1 777
.0014 .0021 .0031	.0102 .0159 .0230	1-8	2.182	16.32 19.75	12-0 12-6 13-0	113.1 122.7 132.7	846 918 993
.0042 .0055	.0312 .0408	2-0 2-2 2-4		23.50 27.58 31.99	13-6 14-0	143.1 153.9	1071 1152
.0085 .0123 .0167	.0638 .0918 .1249	2-6 2-8 2-10	4.909 5.585 6.305	36.72 41.78 47.16	146 150 156	165.1 176.7 188.7	1235 1322 1412
.0218 .0276 0341	.1632 .2066 2550	3-0 3-3 3-6	7.069 8.296 9.620	52.88 62.06 71.97	16-0 16-6 17-0	201.1 213.8 227 0	1504 1600 1698
.0412	. 3085	3-9 4-0	11.045	82.62	17-6	240.5	1799 1904
.0668 .0873 .1104	.4998 .6528 .8263	4-6 5-0 5-6	15.90 19.63 23.76		18-6 19-0 19-6	268.8 283.5 298.7	2011 2121 2234
.1650	1.234	6-0 6-6	33.18	248.23	20-0 20-6	314.2 330.1	2350 2469
.2304	1.724	7-6	44.18	330.48	21-6	363.1	2591 2716 2844
.3068 .3491	2.295 2.611	86	56.75 63.62	424.48 475.89	22-0 22-6 23-0 23-6	397.6 415.5 433.7	2974 3108 3245
.6669	4.937	100 106			24-0 24-6	452.4 471.4	3384 3527 3672
	.0003 .0008 .0014 .0021 .0031 .0042 .0055 .0085 .0123 .0167 .0218 .0276 .0341 .0412 .0491 .0495 .0304 .0491 .0491 .0495 .0304 .0491 .0495 .0495 .0495 .0495 .0495 .0495 .0491 .0495 .0455 .0455 .04555 .045555555555555555	.0003 .0025 .0008 .0057 .0014 .0102 .0021 .0159 .0031 .0230 .0042 .0312 .0055 .0408 .0085 .0638 .0123 .0918 .0167 .1249 .0218 .1632 .0218 .2550 .0411 .3085 .0491 .3672 .0668 .4998 .0873 .6528	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

1 gallon = 231 cu. in. = .13368 cu. ft. = 8.32 lbs. water approxi-mately.

1 cu. ft. = $62\frac{1}{2}$ lbs. water approximately. 1 barrel = $31\frac{1}{2}$ gallons.

Comparative Table Number of Smaller Pipes

With the same velocity of flow, the volume delivered by two pipes of different sizes is proportional to the squares of their diameters. With the same head or pressure, however, the velocity is less in the smaller pipe and the volume delivered varies about

_		Sn	aller Pipe	es, Diamet	ters, Inche	s	
Large Pipe, Diam., Ins.	1	2	3	4	5	6	7
	1	Number to	o Give San	ie Capacit	y as One I	arge Pipe	
2 3 4 5	5.7 15.6 32.0 55.9	2.8 5.7 9.9	2.1 3.6	 	· · · · · · · · · · · · · · · · · · ·		
6 7 8 9	88.2 130 181 243	15.6 22.9 32.0 43.0	5.7 8.3 11.7 15.6	2.8 4.1 5.7 7.6	1.6 2.3 3.2 4.3	1.5 2.1 2.8	1.4 1.9
10 11 12 13	316 401 499 609	55.9 70.9 88.2 108	20.3 25.7 32.0 39.1	9.9 12.5 15.6 19.0	5.7 7.2 8.9 10.9	3.6 4.6 5.7 7.1	2.4 3.1 3.8 4.7
14 15 16 17	733 871	130 154 181 211	47.0 55.9 65.7 76.4	22.9 27.2 32.0 37.2	13.1 15.6 18.3 21.3	8.3 9.9 11.7 13.5	5.7 6.7 7.9 9.2
18 20 22 24	 	243 316 401 499	82.2 115 146 181	43.0 55.9 70.9 88.2	24.6 32.0 40.6 50.5	15.6 20.3 25.7 32.0	10.6 13.8 17.5 21.8

of Pipe Capacities

1

Equivalent to One Larger

as the square root of the 5th power. The table is calculated on this basis, the figures in each column showing the number of pipes of the size at the head of that column, equivalent in capacity to one pipe of the corresponding sizes given in side columns.

		Smalle	r Pipes, I	Diameter	s, Inches			
8	9	10	12	14	16	18	20	Large Pipe, Diam.,
	Number	to Give	Same Ca	pacity a	s One La	rge Pipe		Ins.
 	· · · · · · · · · · · · · · · · · · ·	 	 	 	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2 3 4 5
1.3			 	: 	 	 	 	6 7 8 9
1.7 2.2 2.8 3.4	1.3 1.7 2.1 2.5	1.3 1.6 1.9	····· ····· 1.2	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	10 11 12 13
4.1 4.8 5.7 6.6	3.0 3.6 4.2 4.9	2.3 2.8 3.2 3.8	1.5 1.7 2.1 2.4	1.2 1.4 1.6	 1.2	 	 	14 15 16 17
7.6 9.9 12.5 15.6	5.7 7.4 9.3 11.6	4.3 5.7 7.2 8.9	2.8 3.6 4.6 5.7	1.9 2.4 3.1 3.8	$ \begin{array}{c c} 1.3 \\ 1.7 \\ 2.2 \\ 2.8 \\ \end{array} $	(1.3 1.7 2.	 	18 30 30 22 .6 21

Weir Measurement of Water

When the depth of water flowing over a sill or a weir notch is known, the quantity of water passing can be calculated from the table below. The method of using the table is illustrated by the following example:

A weir notch is 16 inches wide; the height of the water some distance back of the notch at a point where the water is level, is observed to be $7\frac{3}{6}$ inches above the bottom of the notch or weir sill. How many cubic feet of water per minute are flowing through this notch?

The table shows that for a height of $7\frac{3}{6}$ inches over the sill, water flows at the rate of 8.01 cubic feet per minute per inch of width. Since this notch is 16 inches wide, the flow is at the rate of $16 \times 8.01 = 128.16$ cubic feet per minute.

Level		Flow of	Water,	Cu. F t. ;	per Minu	ite per In	ich of Wi	idth		
Depth over Weir, Inches	Even	Additional Fractions of an Inch Depth								
Inches	Inches Depth	1/8	*	3/8	ж	⁵ ⁄8	3⁄4	3/8		
0	.00	.01	. 05	. 09	.14	. 19	. 26	.32		
1 2 3 4 5	.40 1.13 2.07 3.20 4.47	1.23 2.21		.64 1.46 2.48 3.66 4.98	2.61 3.81	.82 1.70 2.76 3.97 5.33	.92 1.82 2.90 4.14 5.51	1.02 1.95 3.05 4.30 5.69		
6 7 8 9 10	5.87 7.40 9.05 10.80 12.64	7.60 9.26 11.02	7.80 9.47 11.25	6.44 8.01 9.69 11.48 13.36	9.91 11.71	6.82 8.42 10.13 11.94 13.85	7.01 8.63 10.35 12.17 14.09	7.21 8.83 10.57 12.41 14. 34		
11 12 13 14 15	14.59 16.62 18.74 20.95 23.23	16.88 19.01 21.23	17.15 19.29 21.51	17.41 19.56 21.80	17.67 19.84	20.11	18.21 20.39	22.94		
19 /3	28.03 30.54 3.12	30.86 33.45	28.65 31.18 33.78	28.97 31.50 34 .11	29.28 31.82 34.4	29.59 32.15 4 34.7	29.91 32.47 7\35.1			

Weir Table

78

Pounds Pressure—Feet Head Of Water

Equivalents of pounds pressure per square inch in feet head of water, and vice versa.

Pounds per Sq. In.	Feet Head	Pounds per Sq. In.	Feet Head	Feet Head	Pounds per Sq. In.	Feet Head	Pounds per Sq. In.
1	2.31	110	253.9	1	.43	140	60.63
2	4.62	120	277.1	2	.87	150	64.96
3	6.93	130	300.2	3	1.30	160	69.29
4	9.24	140	323.3	4	1.73	170	73.63
5	11.54	150	346.3	5	2.17	180	77.96
6	13.85	160	369.4	6	2.60	190	82.29
7	16.16	170	392.5	7	3.03	200	86.62
8	18.47	180	415.6	8	3.40	225	97.45
9	20.78	190	438.9	.9	3.90	250	108.3
10	23.09	200	461.8	10	4.33	275	119.1
12	27.6	225	519.5	15	6.50	300	129.9
14	32,2	250	577.2	20	8.66	325	140.8
16	36.8	275	643.0	25	10.83	350	151.6
18	41.4	300	692.7	30	12.99	375	162.4
20	46.2	325	750.4	35	15.16	400	173.2
25	57.7	350	808.1	40	17.32	425	184.0
30	69.3	375	865.9	45	19.49	450	194.8
35	80.8	400	922.6	50	21.65	475	205.7
40	92.4	425	980.3	55	23.82	500	216.5
45	103.9	450	1038	60	25.99	550	238.2
50	115.5	550	1096	65	28.15	600	259.8
55	126.9		1155	70	30.32	650	281.4
60	138.5		1269	75	32.48	700	303.2
65	150.1		1385	80	34.65	750	324.8
70	161.6		1501	85	36.81	800	346.5
75	173.2	700	1616	90	38.98	850	368.1
80	184.7	750	1732	95	41.14	900	389.8
85	196.3	800	1847	100	43.31	950	411.4
90	207.8	850	1963	110	47.64	1000	433.1
95	219.4	900	2078	120	51.97	1100	476.4
100 /	230.9	1000	2309	130	56.3	0 / 13	.00 \519

Water Pressure Losses by Friction in Iron and Steel Pipes

Friction losses in pounds pressure per square inch for each 100 feet of clean and straight iron pipe at various rates of flow.

				Pipe	Size, Inc	hes			
Flow, Gallons per Min.	1	11/2	2	21⁄2	3	4	6	8	10
	Press	ure Los	s in Po	unds pe	r Sq. In	. per 1	00 Ft.	of Pi	pe.
10	3.16	0.47	0.12						
20	12.3	1.66	0.42			· • • • • •			
30	27.5	3.75	0.91	0.40					
40	48.0	6.52	1.60	0.57	0.27	•••••			
50	• • • • • • •	10.0	2.44	0.81	0.35	0.09			
75		22.4	5.32	1.80	0.74	0.20			
100		39.0	9.46	3.20	1.31	0.33	0.05	0.03	
150	• • • • • • •		21.20	7.00	2.35	0.69	0.10	0.04	
200			37.50	12.47	5.02	1.22	0.17	0.05	0.02
250	• • • • • • •			19.66	7.76	1.89	0.26	0.07	0.03
300				28.06	11.2	2.66	0.37	0.09	0.04
400					19.5	4.73	0.65	0.16	0.06
500					30.8	7.43	0.96	0.25	0.09
750							2.21	0.53	0.18
1000			•••••			• • • • •	3.88	0.94	0.32
1250								1.46	0.49
1500								2.09	0.70
1750 . 100			••••			\!		\	0.95
						$\left\{ \right\}$		\backslash	

Water Pressure Losses by Friction in Wood Pipes

Head in Feet of Water Lost per 1,000 Feet of Pipe at Various Rates of Flow

Rate			Pipe Siz	æ, Inche	5		
of Flow, Feet per	4	6	8	12	16	20	30
Second		Head	d in Feet	: Lost pe	r 1,000 F	'eet	
1 1.5 2 2.5 3	.97 2.3 4.2 6.5 9.4	.63 1.3 2.4 3.8 5.5	.43 .97 1.6 2.6 3.9	.26 .61 1.1 1.7 2.5	.18 .41 .73 1.2 1.6	.11 .22 .45 .83 1.1	. 09 . 16 . 29 . 47 . 6 6
3.5 4 4.5 5 5.5	12.6 16.0 19.7 23.6 27.5	7.4 9.5 12.1 15.1 18.1	5.5 7.2 9.2 11.3 13.5	3.4 4.4 5.5 6.7 8.1	2.3 3.0 3.8 4.7 5.6	1.6 2.1 2.7 3.3 4.0	.89 1.1 1.4 1.8 2.2
6 6.5 7 7.5 8	·····	21.4 25.1	16.0 18.7 21.5 24.4 27.3	9.7 11.5 13.3 15.3 17.2	6.7 7.7 8.8 10.2 11.6	4.8 5.6 6.5 7.3 8.3	2.7 3.2 3.7 4.2 4.7
8.5 9 9.5 0	······ ······	•••••	· · · · · · · · · · · · · · · · · · ·	19.3 21.5 22.8	13.1 14.6 16.1 17. 6	9.3 10.2 11.2 12.2	5.2 5.7 6.3 6.8
	/					\backslash	\backslash

.

Water Pressure Losses by Friction in Elbows

Friction losses in pounds pressure per square inch for each elbow, at various rates of flow.

				Pipe	Size, In	ches			
Flow, Gallons per Minute	1	11/2	2	21/2	3	4	6	8	1
		Press	sure Los	s in Po	unds pe	r Sq. In	. per E	lbow	
10	. 094	.018		·. 003					
20	.376			.012	.005				• • •
30	.845	.157		.028	.011	•••••		• • • • •	• • •
40	1.50	.278		.049	.02	.007	· · · ·	••••	•••
50	2.58	.43	. 153	.08	.032	.01	••••	••••	•••
75	5.30	.98	.35	.172	.072	. 024	. 005		
100	0.00	1.72	.612	.32	.128	.043	.008	.003	•••
150		3.92	1.39	.685	.286	.096	.019	.006	.0
200		6.88	2.44	1.28	. 512	.172	.032	.011	.0
250			3.86	1.91	. 80	. 268	. 052	. 017	.0
300			5.56	2.74	1.14	. 384	.076	.025	.0
350				3.77	1.38	. 530	.103	.034	.0
400				5.12	2.05	. 688	. 128	.044	.0
450				6.20	2.58	. 870	.170	.057	.0
500				7.64	3.20	1.07	. 208	. 068	.0
750						2.42	.470	. 156	.0
1000	1					4.28	.832	.272	.1
1250							1.31	.435	.1
1500	1						1.88	. 624	.2

To find the friction head in feet of water, multiply the above gures by 2.3 or see table on next page.

Capacities of Pumps

Plunger Displacements per Stroke, in Gallons

For approximate capacity of any pump per minute, multiply capacity per plunger per stroke from table below, by number of working strokes per minute for all plungers. When pump is new and in good condition, deduct 10% to allow for slip, rod displacements, etc. When pump is in poor condition and piping is old, greater allowances must be made.

Plunge	r Size		Le	ength of	Stroke,	Inches		
Diam.,	Area,	3	4	6	8	10	12	16
In.	Sq. In.	Theo	oretical (Capacity	per Plu	inger Sti	roke, Ga	llons
1½	1.77	0.023	0.031	0.046				
2	3.14	.041	.054	.082	0.109			
21⁄2	4.91	.064	.085	. 128	.170	0.213		
3	7.07	.092	.122	.184				
3½	9.62	.125	.167	. 250	.333	.417	. 500	
4	12.57	.163	.218	.326	.435	. 544	.653	0.870
41⁄2	15.90		.275	.413				1.102.
5	19.64		.340	. 510	.680			1.360
51/2	23.76	. 309	.411	. 617	.823	1.020	1.234	1.646
6	28.27		.490	.734				1.958
7	38.49		. 666	1.000			1.999	
8	50.27		.870	1.306	1.741	2.176	2.611	3.482
9	63.62			1.652		2.754		
10	78.54			2.040	2.720	3.400	4.080	5.440
12	113.1	2.938	3.917	4.896	5.875	7.833
14	153.9				5.330	6.663	1.994	<i>.</i> [10.66
· · /	201.1) 6.96C	07.8 /U	3/10.44	13.92
20 /3	314.2 .			. 	\	./ <i>13</i> .6	. orf 0	32 /21.76
/	/				1	\setminus	· \	

Gallons			Total Height of Elev ation, Suction to Delivery, in Feet	ot Eleva	tion, Suct	ion to De	livery, in	Feet			
2	20	30	40	50	60	75	100	125	150	200	300
				Th	Theoretical Horsepower	Новером	er				
0.01		0.037	0.05	0.06	0.07	0.09	0.12	0.16 .47	0.19 .56	0.25	0.37
.062	22 .125 57 .175 55 .250	.187 .262 .375	50 33	£.4.3.	.37 .75 .75	<u> </u>	.62 .87 1.25	.78 1.08 1.56	.94 1.31 1.87	1.25 1.75 2.50	1.78 2.62 3.75
.187 .250 .375	375 50 .500 15 .750	.750 .750	1.00 1.50	.94 1.25	1.12 1.50 2.25	1.40 1.87 2.81	1.87 2.50 3.75	2.34 3.12 69	2.81 3.75 5.62	3.75 5.00 7.50	5.62 7.50 11.25
3.2			2.50 2.50	3.12	3.75	3.75	5.00 6.25	6.25 7.81	9.37	10.00 12.50	15.0
.750 1.00 1.25	00 2.50 2.50 2.50	2.25 3.00 3.75	3.80 5.80 8.80	3.75 5.00 6.25	4.50 6.00	5.62 7.50 9.37	7.50 10.00 12.50	9.37 12.50 15.62	11.25 15.00 18.75	15.00 20.00 25.00	22.50 30.00 37.50

GOODMAN MINING HANDBOOK

.

.

•

Duplex Steam Pumps

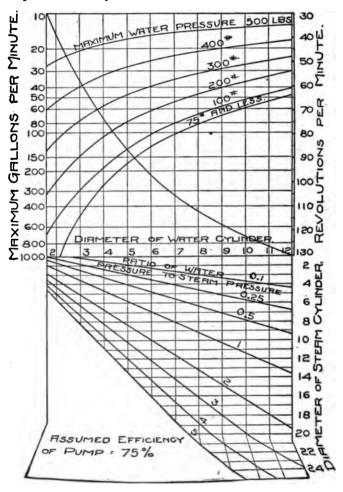
Diagrams for Determining Sizes and Speeds Necessary for Various Service Requirements

The diagrams refer only to duplex, direct-connected steam pumps, and assume a pump efficiency of 75%.

To illustrate the method of using the diagrams the following example will serve:

EXAMPLE—What should be the dimensions and speed of a duplex steam pump to deliver a maximum of 175 gallons of water per minute against a head equal to a pressure of 300 pounds per square inch, if the available steam pressure is 100 pounds?

(A) WATER CYLINDER DIAMETER—Starting at the upper left side of Diagram 1, at the point for 175 gallons per minute, trace horizontally to the right to the line that curves from the upper left to the lower right; thence vertically down to the center of the diagram, to find the proper diameter of water cylinder—5.5 inches.


(B) STEAM CYLINDER DIAMETER—Continue thence vertically down to the diagonal which represents the ratio of the water pressure to the steam pressure. In this example the ratio is 300 to 100, or 3. From the intersection with this diagonal (3) trace horizontally to the right side of the diagram, to find the steam cylinder diameter—11 inches.

(C) SPEED—From the same intersection with the curved line in the upper part of the diagram, horizontally in from the point for 175 gallons per minute at the left, trace vertically to the diagonal for 300 pounds water pressure; thence horizontally to the right side of the diagram, to find the proper speed of running—62 r. p. m.

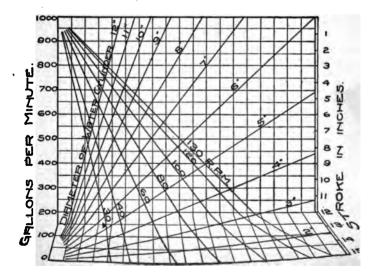
(D) STROKE—Starting at the left side of Diagram 2, at the point for 175 gallons per minute, trace horizontally to the right to the diagonal for 5.5-in. diameter of wate cylinder; thence vertically to the point where a diagon

Duplex Steam Pumps-Continued

Diagram 1. Diameters of Steam and Water Cylinders, and Speeds Necessary for Various Pressures and Volumes.

Duplex Steam Pumps-Continued

for 62 r. p. m. would intersect; thence horizontally to the right side, to find the stroke—7.2 in.


Thus the combined use of the two diagrams shows that a duplex pump $11 \times 5\frac{1}{2} \times 7\frac{1}{2}$ in. should be used, at 62 r. p. m.

If the head is expressed in feet of water, reduce this to pounds per square inch by multiplying the head in feet by .433, or by use of the conversion table on page 79.

Diagram 2

Lengths of Stroke Necessary to Give Desired Volume with Various Water Cylinder Diameters and at Various

Speeds

Diameters and Speeds

Rules for Size and Speed Determinations for Pulleys, Sheaves, Gears and Sprocket Wheels

The driving wheel is called the driver, and the receiving wheel the driven.

Diameters must be measured in like units, as inches or feet, for both wheels, and speeds must also be in like units, as rotations per minute

Number of teeth in gears or sprocket wheels may be used in-stead of diameters in these calculations, but the substitution, if made at all, must be made for both driver and driven.

To determine the diameter of the driver, when the diam-1. eter of the driven and the speeds of both driver and driven are given:

Diameter of driven X rotations of driven

-= Diameter of driver.

Rotations of driver

2. To determine the diameter of the driven, when the diameter of the driver and the speeds of both driver and driven are given:

Diameter of driver \times rotations of driver

-= Diameter of driven. Rotations of driven

Rotations of driver.

3. To determine the speed of the driver, when the speed of the driven and the diameters of both driver and driven are given:

Diameter of driven \times rotations of driven

Diameter of driver

To determine the speed of the driven, when the speed of 4. the driver and the diameters of both driver and driven are given:

Diameter of driver \times rotations of driver =Rotations of driven.

Diameter of driven

Linear Speeds of Rotation Pulley Rims or Pitch Lines of Gears, etc.

For intermediate diameters or rotations, or for values outside the limits of the table, use proportionate values.

				Rotat	ions per	Minute)		
Diam. In.	100	125	150	175	200	250	300	350	400
			Line	ear Spee	ed, Feet	per Mi	nute		
6 7 8 9 10	157.1 183.3 209.4 235.6 261.8	196.3 229.1 261.8 294.5 327.2	235.6 274.9 314.2 353.4 392.7	274.9 320.7 366.5 412.3 458.1	366.5 418.9 471.2	458.1 523.6 589.0	471.2 549.8 628.3 706.8 785.4	549.8 641.4 733.0 824.7 916.3	628.3 733.0 837.8 942.5 1047.2
11 12 13 14 15	288.0 314.2 340.3 366.5 392.7	360.0 392.7 425.4 458.1 490.8	432.0 471.2 510.5 549.8 589.0	504.0 549.8 595.6 641.4 687.2	576.0 628.3 680.7 733.0 785.4	785.4 850.8 916.3		1191.2 1282.8	1151.9 1256.6 1361.4 1466.1 1570.8
16 17 18 19 20	418.9 445.1 471.2 497.4 523.6	523.6 556.3 589.0 621.7 654.5	628.3 667.6 706.8 746.1 785.4	733.0 778.8 824.6 870.5 916.3	890.1 942.5 994.8	1112.7 1178.1 1243.5	1256.6 1335.2 1413.7 1492.3 1570.08	1557.7 1649.3 1741.0	1675.5 1780.2 1885.0 1989.7 2094.4
22 24 26 28 30	576.0 628.3 680.7 733.0 785.4	916.3	942.5 1021.0 1099.6	1099.6 1191.2 1282.8	1256.6 1361.4 1466.1	1570.8 1701.7 1832.6	1727.9 1885.0 2042.0 2199.1 2356.2	2015.9 2199.1 2382.4 2565.7 2748.9	2303.8 2513.3 2722.7 2932.2 3141.6
32 34 36 38 40	890.1 942.5 994.8	1112.6 1178.1 1241.0	1335.2 1413.7 1487.3	1557.7 1649.3 1738.5	1780.2 1885.0 1989.7	2094.4 2225.3 2356.2 2482.1 2618.0	2670.4 2827.4 2974.5	2932.1 3115.4 3298.7 3477.0 3665.2	3351.0 3560.5 3769.9 3979.4 4188.8
44 46 48	1151.9 1204.2 1256.6	1439.9 1505.3 1570.8	1727.9 1806.4 1885.0	2015.9 2107.5 2199.1	2303.8 2408.6 2513.3	2748.9 2879.8 3010.7 3141.6 3272.5	3455.8 3612.8 3769.9	3848.5 4031.8 4215.0 4398.2 4581.5	4398.2 4607.7 4817.1 5026.5 5236.0
56 58	1466.1 1518.4	1832.6 1898.0	2199.1 2277.7	2565.6 2657.3	2932.2 3036.9	3403.4 3534.3 3665.2 3796.1 3927.0	4398.2	4764.8 4948.0 5131.2 5314.5 5497.8	5445.4 5654.9 5864.3 6073.7 6283.2
68 72 76	1780.2 1885.0 1989.7	2225.3 2356.2 2487.1	2670.4 2827.4 2984.5	3115.4 3298.7 3481.9	3560.5 3769.9 3979.4	4188.8 4450.6 4712.4 4974.2 5236.0	5340.7 5654.9 5969.0	5864.3 6230.8 6597.3 6963.9 7330.4	6702.1 7120.9 7539.8 7958.7 8377.6
88 2 92 2	2303.8/2 408.6/3	2879.8	3455.8 3612.8	4031.7 4215.0	4607 . 4817 .	1 5759 1 6021	6/0911		

GOODMAN MINING HANDBOOK

Horsepower of Leather Belting

Single Belts

Single Belt 1 Inch Wide Gives 1 H. P. at 800 Ft. per Min.

Belt Speed,	Len		Be	lt Width	, Inches		-	
Feet per Minute	3	4	5	6	7	8	9	10
600 900 1200 1500 1800	2.4 3.6 4.7 5.8 6.9	3.2 4.7 6.3 7.8 9.3	4.0 5.9 7.9 9.7 11.5	4.8 7.1 9.4 11.6 13.9	5.6 8.3 11.0 13.6 16.2	6.4 9.5 12.6 15.5 18.5	7.1 10.6 14.2 17.5 20.8	7.9 11.8 15.7 19.4 23.1
2100 2400 2700 3000 3300	7.5 9.0 9.9 10.8 11.7	$\begin{array}{c} 10.7 \\ 12.0 \\ 13.2 \\ 14.4 \\ 15.5 \end{array}$	13.3 15.1 16.6 18.1 19.4	$16.5 \\18.1 \\19.9 \\21.7 \\23.3$	18.6 21.1 23.2 25.3 27.2	21.8 24.1 26.5 28.9 31.1	23.9 27.1 29.8 32.5 34.9	26.6 30.1 33.1 36.1 38.8
3600 4200 4800 5400 6000	$12.5 \\13.8 \\14.7 \\15.3 \\15.3 \\15.3$	$16.6 \\ 18.4 \\ 19.6 \\ 20.4 \\ 20.4$	$20.8 \\ 23.0 \\ 24.5 \\ 25.5 \\ 25.5 \\ 25.5 \\ $	$\begin{array}{r} 24.9\\ 27.6\\ 29.4\\ 30.6\\ 30.6\end{array}$	$\begin{array}{r} 29.1 \\ 32.2 \\ 34.3 \\ 35.7 \\ 35.7 \end{array}$	33.2 36.8 39.0 40.8 40.8	37.4 41.4 44.1 45.9 45.9	41.5 46.0 49.0 51.0 51.0
Belt Speed.			Be	lt Width	, Inches			
Feet per Minute	11	12	14	16	18	20	22	24
600 900 1200 1500 1800	8.7 13.0 17.3 21.3 25.3	9.5 14.2 18.9 23.3 27.7	11.1 16.6 22.0 27.7 32.3	$\begin{array}{r} 12.7 \\ 18.9 \\ 25.2 \\ 31.0 \\ 36.9 \end{array}$	$ \begin{array}{r} 14.3 \\ 21.3 \\ 28.3 \\ 34.9 \\ 41.5 \end{array} $	15.9 23.6 31.4 38.8 46.2	26.0 34.6	28.4 37.7 46.5
2100 2400 2700 3000 3300	29.2 33.1 36.4 39.7 42.7	31.9 36.1 39.7 43.3 46.5	37.2 42.1 46.1 50.1 54.2	42.5 48.2 52.9 57.7 62.1	47.8 54.2 59.6 65.0 69.9	53.2 60.2 66.2 72.2 77.6	72.8 79.3	72.2 79.9 86.6
	45.7 50.6 53.9 56.1	49.8 55.2 58.8 61.2 61.2	58.2 64.4 68.6 71.4 71.4	66.4 73.6 78.4 81.6 81.6	74.7 82.8 88.2 91.8 91.8	102.	91.3 101.2 107.8 0 112	99.6 110.4 117.6 2 122

Horsepower of Leather Belting

Double Belts

Double Belt 1 Inch Wide gives 1 H. P. at 560 Ft. per Min.

Belt Speed, Feet per				Belt	Width	, Inch	es			
Minute	6	7	8	9	10	12	14	16	18	20
600 900 1200 1500 1800	8.2 12.2 16.2 19.8 23.7	9.5 14.2 18.8 23.2 27.6	10.9 16.2 21.5 26.5 31.6	12.2 18.2 24.2 29.8 35.5	13.6 20.3 26.9 33.1 39.5	16.3 24.3 32.3 39.7 47.4	19.0 28.4 37.7 46.4 55.3	21.7 32.4 43.1 53.0 63.2	24.4 36.5 48.5 59.6 71.1	27.1 40.5 53.9 66.2 79.0
2100 2400 2700 3000 3300	27.4 31.0 34.0 37.2 39.9	31.9 36.1 39.7 43.3 46.6	36.5 41.3 45.3 49.5 53.2	41.0 46.4 51.0 55.7 59.9	45.6 51.6 56.7 61.9 66.5	54.7 61.9 68.0 74.3 79.8	72.2 79.3 86.6	90.7	92.8 102.0 111.4	113.3
3600 4200 4800 5400 6000	42.8 47.4 50.4 52.2 52.4	49.9 55.3 58.8 61.2 61.2	57.0 63.2 67.2 69.9 69.9	64.1 71.0 75.6 78.6 78.6	87.4	94.7 100.8 104.8	99.8 110.5 117.6 122.3 122.3	126.3 134.4 139.8	142.1 151.2 157.3	157.9 168.0 174.7
Belt Speed,				Belt	Widt	h, Incl	nes			
Feet per Minute	22	24	26	28	30	32	36	40	44	48
600 900 1200 1500 1800	29.9 44.6 59.2 72.8 86.9	64.6 79.5	35.3 52.7 70.0 86.1 102.7	56.7	60.7 80.8 99.3	64.8 86.2 106.0	72.9 96.9 119.2	81.0 107.7 132.4	89.1 118.5 145.7	97.2 129.2 158.9
2100 2400 2700 3000 3300	113.4 124.7 136.1	123.7 136.0 148.5	134.1 147.3 160.9	127.6 144.4 158.7 173.3 186.3	154.7 170.0 185.6	165.0 181.3 198.0	185.6 204.0 212.8	206.2 226.6 237.5	226.9 249.3 262.3	247.5 272.0 287.0
3600 4200	173.7	189.5	205.2	199.5 221.0 235.2	236.8	252.6	256.5 284.7 8 302 6 314	4315.	6347	3/378

-

Horsepower of Shafting

1. Headshafts

Headshafts are those which receive or deliver power in relatively large units, as in jackshafts or the receiving-pulley sections of lineshafts, where bearings may be placed close, to relieve the shaft of the bending action due to the tension of belts or ropes and the weight of pulleys, sheaves, etc.

Shaft Diameter,		SPE	ED, RO	TATIO	NS PEF	R MINU	TE	
Inches	100	125	150	175	200	250	300	400
2 ³ /6	8.18	10.2	12.3	14.3	16.4	20.5	24.5	32.7
2 ⁷ /6	11.6	14.5	17.4	20.3	23.2	29.0	34.8	46.4
2 ¹¹ /6	15.5	19.4	23.3	27.2	31.1	38.8	46.6	62.1
2 ¹⁵ /6	20.3	25.4	30.4	35.5	40.6	50.7	60.8	81.1
3 3 16	25.9	32.4	38.9	45.3	51.8	64.8	77.7	104
3 7 16	32.5	40.6	48.8	56.9	65.0	81.3	97.5	130
3 11 16	40.1	50.1	60.2	70.2	80.2	100	120	160
3 15 16	48.8	61.1	73.3	85.5	97.7	122	147	195
4 ³ /16	58.7	73.4	88.1	103	117	147	176	235
4 ⁷ /16	69.9	87.4	105	122	140	175	210	280
4 ¹¹ /16	82.4	103	124	144	165	206	247	330
4 ¹⁵ /16	96.3	120	144	169	193	241	289	38 5
5 ³ /16	112	140	168	195	223	279	335	447
5 ⁷ /16	129	161	193	225	257	322	386	514
5 ¹¹ /16	147	184	221	258	294	368	442	589
6	167	209	251	293	335	419	502	670
		275 346 422 512	330 416 506 614	384 485 591 717	439 555 675 819	549 694 844	659 832	879
	277 338	346 422	416 506	485 591	555 675	694		87

Horsepower = cube of diameter in inches \times speed in rotations per minute \div 125.

Horsepower of Shafting

2. Lineshafts

.

Supported by Bearings every 8 to 10 Feet

Lineshafts are those from which power in relatively small units is delivered at various intervals, in various directions, from pulleys not always close to bearings.

Horsepower = cube of diameter in inches×speed in rota	tions
per minute ÷ 90.	

Shaft Diameter,		SPE	ED, RC	TATIO	NS PEF	R MINU	TE	
Inches	100	125	150	175	200	250	300	400
1 % 1 7/8 1 % 1 % 1 %	1.86 3.30 5.34 8.08	4.13 6.67		3.26 5.78 9.34 14.1	3.72 6.60 10.7 16.2		5.58 9.90 16.0 24.2	
2 % 2 7 k 2 1 k 2 1 k 2 5 k	11.6 16.1 21.6 28.2	$14.5 \\ 20.1 \\ 27.0 \\ 35.2$	17.4 24.1 32.4 42.2	20.4 28.2 37.7 49.3	23.3 32.2 43.1 56.3	29.1 40.2 53.9 70.4	34.9 48.3 64.7 84.5	46.5 64.4 86.3 113
3 3 16 3 718 3 11 16 3 11 16	36.0 45.1 55.7 67.8	45.0 56.4 69.6 84.8	54.0 67.7 83.6 102	63.0 79.0 97.5 119	72.0 90.3 111 136	90.0 113 139 170	108 135 167 203	143 181 223 271
436 476 41.8 4 ¹¹ 8 4 ¹¹ 8	81.6 97.1 114 134	102 121 143 167	122 146 172 201	143 170 200 234	163 194 229 267	204 242 286 334	245 291 343 401	326 388 458 534
536 536 516 6	155 179 204 233	194 223 256 291	233 268 307 349	271 313 358 408	310 357 409 466	388 447 515 583	465 536 617 699	621 714 822 931

Horsepower of Shafting

3. Transmission Shafts

Supported by bearings every 10 to 12 feet

Transmission shafts are those which, carried in regularly spaced bearings and simply transmitting power, are subject to no bending stresses due to receipt or delivery of power at intermediate points.

Shaft Diameter,		SPEED, ROTATIONS PER MINUTE									
Inches	100	125	150	175	200	250	300	400			
1 3/6 1 7/16 1 ¹¹ /16 1 ¹⁵ /16	2.79 4.95 8.01 12.1						8.37 14.9 24.0 36.4	11.2 19.8 32.0 48.5			
2 ³ /6 2 ⁷ /6 2 ¹¹ /16 2 ¹⁵ /16	17.4 24.1 32.4 42.2	21.8 30.2 40.4 52.8	26.2 36.2 48.5 63.4	30.5 42.2 56.6 73.9	34.9 48.3 64.7 84.5	43.6 60.4 80.9 106	52.3 72.4 97.4 127	69.9 96.6 129 169			
3 3 16 3 7 16 3 11 16 3 15 16	54.0 76.7 83.6 102	67.5 95.9 104 127	81.0 114 125 153	94.5 133 146 178	108 152 167 203	135 191 209 254	162 229 251 305	216 306 334 407			
4 ³ /6 4 ⁷ /6 4 ¹¹ /6 4 ¹⁵ /6	122 146 172 201	153 182 215 251		214 255 300 351	245 291 343 401	306 364 429 502	367 437 515 602	490 582 687 802			
5 4 j	268	335 38 3		407 469 537 618	465 536 613 708	582 670 767 \887	698 804 920	931 •••••			
0 /3	49 4	39	528	618	708	1887	\	.\			

Horsepower = cube of diameter in inches \times speed in rotations per minute $\div 60$.

Toothed Gearing Pitch Diameters for 1-Inch Circular Pitch

For any other pitch, multiply by that pitch

Num- ber of Teeth	Diam- eter,	Num- ber of Teeth	Pitch Diam- eter, Inches	Num- ber of Teeth	Diam- eter,	Num- ber of Teeth	Diam- eter,	Num- ber of Teeth	Diam- eter,
11	3.50	26	8.28	41	13.05	56	17.83	71	22.60
12	3.82	27	8.60	42	13.37	57	18.14	72	22.92
13	4.14	28	8.91	43	13.69	58	18.46	73	23.24
14	4.46	29	9.23	44	14.00	59	18.78	74	23.56
15	4.78	30	9.55	45	14.33	60	19.10	75	23.88
16	5.09	31	9.87	46	14.67	61	19.42	76	24.19
17	5.41	32	10.19	47	14.96	62	19.74	77	24.51
18	5.73	33	10.50	48	15.28	63	20.06	78	24.83
19	6.05	34	10.82	49	15.60	64	20.37	79	25.15
20	6.37	35	11.14	50	15.92	65	20.69	80	25.47
21	6.69	36	11.46	51	16.24	66	21.01	81	25.79
22	7.00	37	11.78	52	16.55	67	21.33	82	26.10
23	7.32	38	12.10	53	16.87	68	21.65	83	26.42
24	7.64	39	12.42	54	17.19	69	21.97	84	26.74
25	7.96	40	12.73	55	17.51	70	22.28	85	27.06

Diametral and Circular Pitch Equivalents

Diametral Pitch is the number of teeth per inch of pitch diameter

Dia-	Circular	Dia-	Circular	Dia-	Circular	Dia-	Circular
metral	Pitch,	metral	Pitch,	metral	Pitch,	metral	Pitch,
Pitch	Inches	Pitch	Inches	Pitch	Inches	Pitch	Inches
$ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{4} \\ 2 \\ \frac{2}{4} \\ \end{array} $	6.2832 4.1888 3.1416 2.5133 2.0944 1.7952 1.5708 1.3963	2 ¹ ⁄ ₂ 2 ⁸ ⁄ ₄ 3 ¹ ⁄ ₂ 4 5 6 7	1.2566 1.1424 1.0472 .8976 .7854 .6283 .5236 .4488	8 9 10 11 12 14 16 18	.3927 .3491 .3142 .2856 .2618 .2244 .1963 .1745		.1571 .1428 .1309 .1208 .1122 .0982 .0813

GOODMAN MINING HANDBOOK

Horsepower of Cast Iron Gears Spur Gears with Molded Teeth

For gears larger than given, take double the horsepower of a gear of half the size. Proportionate horsepowers for other speeds and for other face

Proportionate horsepowers for other speeds and for other face indths.

For miter and bevel iron gears, multiply tabular horsepowers by 0.7. For gears of cast steel, multiply by $2\frac{1}{2}$.

,			С	ircula r	Pitch, I	nches			
Number	3⁄4	7/8	1	1 1/4	1 1/2	1 3⁄4	2	2 1/2	3
of]	Face Wi	idth, In	ches			
Teeth	1 1/2	2	21/2	3	4	5	6	71/2	9
			Horse	power p	per 100	R. P. I	И.		
10	0.4	0.8	1.3	2.5	4.7	8.1	11.5	22.5	40.5
11 12 13 14 15	.5 .5 .6 .7	.9 1.0 1.1 1.1 1.2	1.4 1.6 1.7 1.8 2.0	2.7 3.0 3.2 3.4 3.7	5.2 5.7 6.1 6.6 7.1	8.9 9.7 10.5 11.3 12.1	12.7 13.8 15.0 16.1 17.3	24.8 27.0 29.3 31.5 33.8	41.6 48.7 52.7 56.8 60.8
16 17 18 19 20	.7 .7 .8 .8	1.3 1.4 1.5 1.5 1.6	2.1 2.2 2.4 2.5 2.6	3.9 4.2 4.4 4.7 4.9	7.6 8.0 8.5 9.0 9.5	12.9 13.7 14.5 15.3 16.1	18.4 19.6 20.7 21.9 23.0	36.0 38.3 40.5 42.8 45.0	64.9 68.9 72.9 77.0 81.0
21 22 23 24 25	.9 1.0 1.0 1.1 1.1	1.7 1.8 1.9 2.0 2.0	2.8 2.9 3.0 3.1 3.3	5.2 5.4 5.7 5.9 6.1	9.9 10.4 10.8 11.3 11.8	16.9 17.7 18.5 19.3 20.1	24.2 25.3 26.5 27.6 28.8	47.3 49.5 51.8 54.0 56.3	
26 27 28 29 30	1.1 1.2 1.2 1.3 1.3	2.1 2.2 2.3 2.4 2.4	3.4 3.5 3.7 3.8 3.9	6.4 6.6 6.9 7.1 7.4	12.2 12.7 13.2 13.7 14.1	20.9 21.7 22.5 23.4 24.2	29.9 31.1 32.2 33.4 34.5	58.5 60.8 63.0 65.3 67.5	117.4
34 / 1		2.5 2.6 2.7 2.8 2.8 2.8	4.1 4.2 4.3 4.5 4.6	7.6 7.9 8.1 8.4 8.6	14.6 15.1 15.5 16.0 16.) 27.4	4\ 39.	72.0 74.3 1 76.5	125.5 129.6 133.6 5/137. .8/141

Horsepower of Cast Iron Gears

			C	ircular	Pitch, I	nches						
Number	3⁄4	3∕8	1	1¼	1 1/2	1 3⁄4	2	21/2	3			
of		•		Face Wi	idth, In	ches			·			
Teeth	1 ½	2	2 1/2	3	4	5	6	71/2	9			
		Horsepower per 100 R. P. M.										
36 37 38 39 40	1.6 1.6 1.7 1.7 1.8	2.9 3.0 3.1 3.2 3.3	4.7 4.8 5.0 5.1 5.2	8.9 9.1 9.3 9.6 9.8	16.9 17.4 17.9 18.4 18.8	29.0 29.8 30.6 31.4 32.2	41.4 42.5 43.7 44.8 46.0	83.3 85.5 87.8	145.8 149.8 153.9 157.9 162.0			
41 42 43 44 45	1.8 1.8 1.9 1.9 2.0	3.3 3.4 3.5 3.6 3.7	5.4 5.5 5.6 5.8 5.9	10.1 10.3 10.6 10.8 11.1	19.3 19.8 20.2 20.7 21.2	33.0 33.8 34.6 35.4 36.2	47.1 48.3 49.4 50.6 51.7	94.5 96.8	166.0 170.0 174.1 178.1 182.2			
4 6 47 48 49 50	2.0 2.1 2.1 2.2 2.2	3.7 3.8 3.9 4.0 4.1	6.0 6.2 6.3 6.4 6.5	11.3 11.6 11.8 12.0 12.3	21.7 22.1 22.6 23.1 23.5	37.0 37.8 38.6 39.4 40.2	54.0 55.2 56.3	103.5 105.7 108.0 110.3 112.5	190.3 194.3 198.4			
51 52 53 54 55	2.2 2.3 2.3 2.4 2.4	4.2 4.2 4.3 4.4 4.5	6.7 6.8 6.9 7.1 7.2	12.5 12.8 13.0 13.3 13.5	24.0 24.5 25.0 25.4 25.9	41.1 41.9 42.7 43.5 44.3	59.8 60.9 62.1	119.3	210.5 214.6 218.6			
56 57 58 59 60	2.5 2.5 2.6 2.6 2.6	4.6 4.6 4.7 4.8 4.9	7.3 7.5 7.6 7.7 7.9	13.8 14.0 14.3 14.5 14.8	26.4 26.8 27.3 27.8 28.3	45.1 45.9 46.7 47.5 48.3	65.6 66.7 67.8	126.0 127.3 130.5 132.8 135.0	230.8 234.8			
61 62 63 64 65	2.7 2.7 2.8 2.8 2.9	5.0 5.0 5.1 5.2 5.3	8.0 8.1 8.3 8.4 8.5	15.0 15.3 15.5 15.8 16.0			71.3 72.4 5 73.	139.5	247.0 251.0 .0255.1 5.3/263			

.

Weights of Steel Angles With Fillet

Pounds per Lineal Foot

Size.	Thickness, Inches										
Inches	1⁄8	**	1⁄4	1 8	⁸ ⁄8	4	1⁄2	5⁄8	34		
5/8x 5/8 3/4x 3/4 7/8x 7/5 1 x1	0.5 0.6 0.7 0.8	0.8 1.0 1.2	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	 	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	 		
1 1/8 x1 1/8 1 1/4 x1 1/4 1 1/2 x1 1/2 1 3/4 x1 3/4	0.9 1.0 1.2 1.4	1.3 1.5 1.8 2.1	1.7 1.9 2.4 2.8	2.1 2.4 2.9 3.4	 3 4 4.0	 4.6	••••	•••••	 		
$\begin{array}{c} 2 & x1\frac{1}{2} \\ x2 \\ 2\frac{1}{4}x1\frac{1}{2} \\ x2\frac{1}{4} \end{array}$		2.1 2.5 2.3 2.8	2.8 3.2 3.0 3.7	3.4 4.0 3.7 4.5	4.0 4.7 4.3 5.3	 5.3 5.0 6.1	 5.5 6.8	 	 		
2 ¹ / ₂ x1 ¹ / ₂ x1 ³ / ₄ x2 x2 ¹ / ₂		2.4 2.6 2.8 3.0	3.2 3.7 4.1	3.9 4.5 5.0	4.6 5.3 5.9	5.3 6.1 6.8	6.0 6.8 7.7	 9.3	· · · · · ·		
$ \begin{array}{c} 2\frac{3}{4}x2\frac{3}{4} \\ 3 \\ x2 \\ x2\frac{1}{2} \\ x3 \end{array} $	2.4 2.6	3.5 3.1	4.5 4.1 4.5 4.9	5.5 5.0 5.5 6.1	6.6 5.9 6.6 7.2	7.6 6.8 7.6 8.4	8.5 7.7 8.5 9.4	 11.4	13.4		
3½x2½ x3 x3½x3½			4.9 5.7	6.1 6.6 7.1	7.2 7.8 8.5	8.3 9.1 9.8	9.4 10.2 11.1	11.4 12.5 13.6	 14.7 16.0		
4 x3 x3 ¹ ⁄ ₂ x4	 	 5.2	 6.6	7.1 8.2	8.5 9.1 9.8	9.8 10.5 11.3	11.1 11.9 12.8	13.6 14.6 15.7	16:0 17.2 18.5		
5 x3 x4 x5	 	 	 	1	9.8 11.0 12.3	11.3 12.8 14.3	12.8 14.5 16.2	15.7 17.8 20.0	18.5 21.1 23.6		
x4 x6	 .		 		12.3 14.4	14.3 17.2	\16.2 \19.6				

Weights of Round and Square Iron

1/2-inch steel plate weighs approximately 10 pounds per square foot

The weight of all rolled steel, in pounds per running foot, is approximately 31% times the sectional area in square inches

Size,	Weight, P Lineal	ounds per Foot	Size,	Weight, I Linea	Pounds per 1 Foot
Inches	Round	Square	Inches	Round	Square
3/1/4/55/00	.094 .167 .261 .376	.120 .213 .332 .478	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$	12.06 13.52 15.07	15.35 17.22 19.18
2122	.511 .668 .845 1.043	.651 .850 1.076 1.328	$2\frac{1}{2} \\ 2\frac{5}{8} \\ 2\frac{3}{4} \\ 2\frac{7}{8} $	16.69 18.40 20.20 22.07	21.25 23.43 25.71 28.10
11 18 3/4 12 / 18 7/8	1.262 1.502 1.763 2.044	1.607 1.913 2.245 2.603	$ \begin{array}{c} 3 \\ 3^{1}_{4} \\ 3^{1}_{2} \\ 3^{3}_{4} \end{array} $	24.03 28.20 32.71 37.56	30.60 35.92 41.65 47.82
1 1 1 1 1 1 1 8	2.347 2.670 3.014 3.379	2.989 3.400 3.838 4.303	$\begin{array}{c c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\$	42.73 48.24 54.07 60.25	54.40 61.41 68.85 76.71
13/m 114 15/m 13/8	3.766 4.173 4.600 5.049	4.795 5.312 5.857 6.428	$5 \\ 5^{1}_{4} \\ 5^{1}_{2} \\ 5^{3}_{4}$	66.76 73.60 80.77 88.29	85.00 93.72 102.80 112.4
17m 1 ¹ 2 19m 1 ⁵ 8	5.518 6.008 6.520 7.051	7.026 7.650 8.301 8.978	$ \begin{array}{c} 6 \\ 6 \frac{1}{2} \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 2 \end{array} $	96.14 112.8 130.9 150.2	122.4 143.6 166.6 191.3
134 178 2	8.178 9.388 10.68	10.41 11.95 13.60	$ 8 8^{\frac{1}{2}} 10 12 $	171.0 193.0 267.0 384.6	217.6 245.6 340.0 489.6
			N	10	1860

GOODMAN MINING HANDBOOK

Weights of Flat Steel

Pounds per Linear Foot

Weight Basis-489.6 Pounds per Cubic Foot

Width,				Thicknes	s, Inches			
Inches	1⁄8	3/16	1⁄4	÷.	3∕8	1/2	34	1
$ \begin{array}{r} 1/2 \\ 5/8 \\ 3/4 \\ 1 \end{array} $.212 .266 .319 .424	.319 .398 .478 .638	.425 .531 .638 .850	.531 .664 .797 1.06	.638 .797 .956 1.28	.850 1.06 1.28 1.70	1.28 1.59 1.92 2.55	1.70 2.12 2.55 3.40
$1\frac{1}{4}\\1\frac{1}{2}\\1\frac{3}{4}\\2$.797 .956 1.12 1.28	1.06 1.28 1.48 1.70	1.32 1.59 1.86 2.12	1.59. 1.92 2.23 2.55	2.12 2.55 2.98 3.40	3.19 3.83 4.47 5.10	
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ 3		1.44 1.59 1.75 1.91	1.91 2.12 2.34 2.55	2.39 2.65 2.92 3.19	2.87 3.19 3.51 3.83	3.83 4.25 4.67 5.10	5.75 6.38 7.02 7.65	7.65 8.50 9.35 10.20
314 312 384 4	1.38 1.48 1.59 1.70	2.08 2.24 2.40 2.55	2.76 2.98 3.19 3.40	3.45 3.72 3.99 4.25	4.15 4.47 4.78 5.10	5.53 5.95 6.38 6.80	8.93 9.57	11.05 11.90 12.75 13.60
$4\frac{1}{2}$ 5 5 $\frac{1}{2}$ 6	1.91 2.12 2.34 2.55	2.87 3.18 3.51 3.83	3.82 4.24 4.67 5.10	4.78 5.31 5.84 6.35	5.74 6.38 7.02 7.65	7.65 8.50 9.35 10.20	12.75 14.03	15.30 17.00 18.70 20.40
6½ 7 7½ 8	2.76 2.97 3.19 3.40	4.14 4.46 4.78 5.10	5.53 5.95 6.36 6.80	6.90 7.44 7.96 8.50	8.29 8.93 9.57 10.20	11.05 11.90 12.75 13.60	17.85 19.13	22.10 23.80 25.50 27.20
8 ¹ ⁄2 9 9 ¹ ⁄2 10	3.61 3.82 4.04 4.25	5.42 5.74 6.06 6.38	7.22 7.65 8.08 8.50	9.03 9.56 10.10 10.62	10.84 11.48 12.44 12.75	14.44 15.30 16.16 17.00	22.96 24.23	28.90 30.60 32.20 34.00
111/2 4	4.46 4.68 .90 10 7	6.7 0 7.02 7.34 .66	8.92 9.34 9.76 10.20	11.16 11.68 12.22 12.70	13.39 14.03 14.66 15.30		28.09 29.3	35.10 37.40 539.10 6040.86

Weights of Iron and Steel

Pounds Per Square Foot

T1	hickness	Weight Foot,	per Square Pounds		Thickness	Weight p Foot,	Weight per Square Foot, Pounds				
Gauge No.	Decimals of an Inch	Iron	Steel	Gauge No.	Decimals of an Inch	Iron	Steel				
7-0's 6-0's		20.00 18.75	20.4 19.125	14 15		3.125 2.8125	3.1875 2.86875				
5-0's 0000 000 00 00	.40625 .375 .34375	17.50 16.25 15. 13.75 12.50	17.85 16.575 15.30 14.025 12.75	16 17 18 19 20	.05625 .05 .04375	2.5 2.25 2. 1.75 1.50	2.55 2.295 2.04 1.785 1.53				
1 2 3 4 5	.28125 .265625 .25 .234375 .21875	10.	11.475 10.8375 10.2 9.5625 8.925	21 22 23 24 25	.028125 .025	1.375 1.25 1.125 1. .865	1.4025 1.275 1.1475 1.02 .8925				
6 7 8 9 10		7.5 6.875 6.25	7.65 7.0125 6.375	27 28 29	.0171875 .015625 .0140625	.75 .6875 .625 .5625 .5	.765 .70125 .6375 .57375 .51				
11 12 13	.109375	5. 4.375 3.75	5.1 .4.4625 3.825	31 32 33	.010985 .01045625 .009375	.4375 .40625 .375	.44625 .414375 .3825				

U. S. Standard Gauges-1/2 Inch and Less

Fractions of an Inch-Over 1/2 Inch Thick

Thickne	Thickness, Inches		t per Foot, ids	Thickn	ess, Inches	Weight per Square Foot, Pounds		
Frac- tion	Decimal	Iron	Steel	Frac- tion	Decimal	Iron	Steel	
9/6/8/11/18/4 11/18/4 13/4 15/80 15/80 15/80	.5625 .625 .6875 .75 .8125 .875	22.73 25.26 27.79 30.31 32.84 35.37	23.5 26. 28.5 31. 33.5 36.	$ \begin{array}{c} 1^{14}\\ 1^{3}\\ 1^{3}\\ 1^{12}\\ 1^{5}\\ 8\\ 1^{3}_{4} \end{array} $	$ \begin{array}{c} 1.125\\ 1.25\\ 1.375\\ 1.5\\ 1.625\\ 1.75\\ 1.75\\ \end{array} $	45. 50. 55. 60.63 65.68 70.7		
1 26 /1	.9375 1.	37.89 40.42	38.5 41.		8 1.87 2.	2 80	.83 81	

Weights of Materials Pounds, Avoirdupois

Earths and Minerals	Cu.	Ft.
Asphaltum	81	7.3
Basalt		
Chalk.		156
Chalk Clay, Potter's, Dry	1	110
Cley Dry in Lump	•••••	63
Clay, Dry in Lump Earth, Common Loam, 1	Drv	00
Loose	<i>J</i> 1 <i>J</i> ,	76
Loose Earth, Common Loam, D	Deve	10
Shalton	JIY,	87
Shaken Earth, Common Loam, M		01
Larth, Common Loan, M	ust,	67
Loose Earth, Common Loam, M		07
Earth, Common Loam, M	oist,	82
Shaken		
Earth, Common Loam, as M	ud.	108
Feldspar		100
Gneiss, Common		
Gneiss, Loose Piles		90
Granite, Solid		170
Gravel	1	117
Gravel Gypsum, Ground, Loose		56
Gypsum in Irregular Lumps		82
Gypsum, Shaken		64
Hornblende		203
Limestone, Piled.		96
Limestone, Solid	1	168
Petroleum	54	4.8
Pornhvrv		170
Quartz, Ground Loose		90
Ouartz, Shaken		105
Quartz, Solid	1	165
Sand, Coarse		117
Sand, Fine		iōó
Sandstone, Piled		86
Sandstone, Solid	••••	IŠŤ
Slate		
Sulphur	••••	125
Turf	· · · ·	25
	••••	23
Matal-	~	-
Metals	Cu.	In.

Aluminum	0.090
Antimony	.244
Arsenic	.208
Brass, Cast.	.282
Brass, Rolled.	.300
Bronze	.315
Copper, Pure	.318
Copper, Rolled	.321
Gold. Pure.	.697
Gold. 20 Carat	.568
Iron. Cast.	.261
Iron. Pure.	.281
fron, wrought	.282
Lead. Hammered	.412
Lead. Pure	.410
	. 290
	.706
Platinum, Rolled	.798
Spelter.	.253
teel, Cast eel, Soft	286
eel, Soft	.283

Metals—Contd.	Cu.In.
Tin	264
Zinc, Cast	248
Zinc, Rolled	
Zilic, Rolleu	200
Woods	Cu. Ft.
Ashes, Damp	. 43
Ashes, Dry	. 38
Boxwood, Dry	60
Cherry, Dry	42
Chestnut, Dry	
Comir	15.6
Cork	
Ebony, Dry	
Elm, Dry	. 35
Hemlock, Dry	
Hickory, Dry	. 53
Lignum Vitae	. 83
Mahogany, Dry	. 53
Maple, Dry	. 49
Oak, Red	. 38
Oak, White	
Pine, White	
Pine, Yellow, Northern	
Pine, Yellow, Southern	
Fille, Tellow, Southern	25
Spruce, Dry	
Sycamore, Dry	. 37
Walnut, Black, Dry.	. 38
Green Timbers weigh from	
1-5 to 1-2 more than dry	
Ordinarily seasoned about	ıt
1-6 more.	

Miscellaneous Products

	Cu. Ft.
Acid, Acetic	66.4
Acid. Muriatic	
Acid, Sulphuric	
Glass, Window	157
Gunpowder, Loose	
Gunpowder, Shaken	
Lard	59.3
Lard Lime, Ground, Loose	53
Lime, Ground, Shaken	70
Lime, Quick, Solid	
Mortar	
Oil. Linseed	
Pitch	
Rosin	69
Rubber	
Salt, Coarse	45
Salt. Fine	
Snow, Fresh Fallen	12
Snow, Packed	50
Sugar	100
Tallow	58.6
Tar	62.4
Turpentine	54.3
Vinegar	61.4
Water Pure	62.5
Water Sea	
Wine.	62.3

Concrete Mixtures

Material Required for 1 Cu. Yd. of Concrete

Sand: 1.41, tons=1 cu. yd. Stone: 1.2 tons=1 cu. yd.

Mixture Stone 2½ in. and Smaller; Dust Screened Out			Stone 2½ in. and Smaller; Small Stone Screened Out			Gravel ¾ in. and Smaller					
Cement, Parts	Sand, Parts	Stone. Parts	Cement, Barrels	Sand. Tons	Stone. Tons	Cement, Barrels	Sand, Tons	Stone. Tons	Cement, Barrels	Sand, Tons	Stone, Tons
1 1 1 1	1.0 1.0 1.0 1.0	2.0 2.5 3.0 3.5	2.63 2.34 2.10 1.88	.56 .61 .45 .41	.96 1.07 1.15 1.20	2.72 2.41 2.16 1.88	.58 .52 .47 .41	1.00 1.11 1.18 1.26	2.30 2.10 1.89 1.71	.49 .45 .41 .37	.89 .96 1.03 1.09
1 1 1 1	1.5 1.5 1.5 1.5	$2.5 \\ 3.0 \\ 3.5 \\ 4.0$	2.09 1.90 1.74 1.61	.68 .61 .56 .52	.96 1.04 1.12 1.18	2.16 1.96 1.79 1.64	.69 .64 .58 .54	.98 1.07 1.15 1.20	1.83 1.71 1.57 1.46	.59 .55 .51 .47	.87 .94 1.00 1.06
1 1 1 1 1	2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.0 3.5 4.0 4.5 5.0	1.73 1.61 1.48 1.38 1.29	.75 .69 .64 .59 .55	.95 1.02 1.08 1.14 1.18	1.78 1.66 1.53 1.43 1.33	.76 .71 .66 .61 .65	.97 1.06 1.12 1.18 1.24	1.54 1.44 1.34 1.26 1.17	.66 .62 .58 .54 .51	.88 .92 .97 1.03 1.07
1 1 1 1 1 1	2.5 2.5 2.5 2.5 2.5	3.5 4.0 4.5 5.0 6.0	1.48 1.38 1.29 1.21 1.07	.79 .75 .69 .65 .58	.95 1.01 1.06 1.11 1.18	$1.51 \\ 1.42 \\ 1.33 \\ 1.26 \\ 1.10$.82 .76 .72 .68 .58	.97 1.04 1.09 1.15 1.24	1.32 1.24 1.16 1.10 .98	.71 .66 .62 .59 .52	.84 .90 .96 1.00 1.07
1 1 1 1 1	3.0 3.0 3.0 3.0 3.0 3.0	4.0 4.5 5.0 6.0 7.0	1.28 1.20 1.14 1.02 .92	.82 .78 .73 .66 .59	.94 .98 1.04 1.12 1.18	1.32 1.24 1.17 1.02 .94	.85 .80 .76 .68 .59	.96 1.02 1.07 1.16 1.26	1.15 1.09 1.03 .92 .84	.73 .71 .66 .59 .54	.87 .90 .94 1.01 1.07
1 1 1 1	3.5 3.5 3.5 3.5	5.0 6.0 7.0 8.0	1.07 .97 .89 .82	.80 .72 .66 .61	.98 1.07 1.14 1.21	1.11 1.00 .91 .81	.83 .75 .69 .64	1.02 1.11 1.18 1.25	.96 .88 .80 .73	.71 .65 .61 .85	.91 .96 1.02 1.07
1 1 1 1	4.0 4.0 4.0 4.0	6.C 7.0 8.0 9.0	.92 .84 .78 .73	.79 .72 .68 .62	1.01 1.08 1.14 1.2	.8	1 .15	9/1.	01 .	172	101

103

. A

Wood Posts and Beams

When used as posts, columns or struts, in lengths not exceeding 12 feet, timber of usual kinds will safely carry, with a factor of 5, unit loads as follows:

Hemlock	. 500	pounds	per	square	inch
Oak			- u	4	æ
Yellow Pine	. 800	"	ű	- 4	4
White Pine	. 500	ű	ű	u	"

For beams or girders the safe load can be determined from the following relation, using yellow pine as the standard:

Let W = Breaking load in pounds (uniformly distributed).B = Breadth of beam in inches.D = Depth of beam in inches.

L = Distance between supports in inches.

Then $W = 9000 \times B \times D^2 \div L$.

This gives the ultimate or breaking load, and should be divided by a factor of safety, depending on the conditions:

3 or 4 for roofs or floors.

5 or 6 for suddenly applied loads.

Since the equation above applies to yellow pine, the breaking load for other kinds of wood must be derived by taking:

 $0.6 \times W$ for hemlock, or white pine. $0.8 \times W$ for oak.

To obtain the net load, the weight of the beam itself must first be deducted from the breaking load, as follows:

> 25 pounds per cubic foot for hemlock. 50 " " " " oak. 30 " " " " white pine. 35 " " " " yellow pine.

Beams will carry only half as much load concentrated at the middle as evenly distributed. Hence for concentrated loads, make calculation as above and take one-half the net uniformly distributed load as the proper concentrated load.

EXAMPLE.—Loose bituminous coal, weighing 50 pounds per abic foot, is to be stored in an overhead bunker 12 feet wide and feet long, and the maximum depth of the coal is to be 10 feet.

Wood Posts and Beams-Continued

How close should the floor joists be spaced if they are of 3×14 -in. yellow pine? If 6-in. square yellow pine posts are to support the structure, how many will be required?

IOISTS—For the joists, B=3, D=14, L=144. Then for the breaking load $W = 9000 \times 3 \times 14 \times 14 \div 144$ = 36,700 pounds. And safe load, with factor of $4 = 36,700 \div 4$ =9,175 pounds. Weight of each joist = cubic feet $\times 35$ $=(3\times14\div144)\times12\times35$ = 122.5, or 125 pounds nearly. Net allowable load per joist =9,175-125 =9,050 pounds. Maximum weight of coal in bunker $=12\overline{\times}60\times10\times50$ = 360,000 pounds. Number of joists required = $360,000 \div 9,050$ = 39.78, or 40 joists. Spacing of joists on centers $=60 \div 40$ =1.5 ft., or 18 in. Approximate weight of bunker..... 50,000 Total weight to be supported......410,000 Safe load for a 6-in. yellow pine post $=6\times6\times800$ = 28,800 pounds. Number of such posts required = $410,000 \div 28,800$

=14.23, or 15 posts.

Actually, 16 or more posts would likely be used.

..... : : : 8.333 9.167 10.00 10.83 11.67 12.50 : 13.33 15.00 16.67 2 N. ^{Wu}nber of Feet, Board Measure, per Lineal Foot for Various Widths and Thicknesses. 8.250 9.000 9.750 10.50 6.750 7.500 12.00 13.50 15.00 0 7.333 8.000 8.667 9.333 10.00 5.333 6.000 6.667 10.67 12.00 13.33 8 9.333 10.50 11.67 : 4.083 4.667 5.250 5.833 6.417 7.000 7.583 8.167 8.750 8.00 0.00 0.00 0.00 : . : 3.000 3.500 4.500 5.000 5.500 6.000 7.500 0 : : 6.667 7.500 8.333 2.083 2.500 2.917 3.333 3.750 4.167 4.583 5.000 5.417 5.833 6.250 Thickness of Board, Inches ŝ **Board Measure** 1.333 1.500 1.666 2.000 2.333 2.667 3.000 3.333 3.667 4.000 4.333 5.000 5.333 6.000 6.667 4 1.021 1.167 1.313 1.457 4.667 5.250 5.833 1.750 2.042 2.333 2.625 2.917 3.208 3.500 3.792 4.083 3 ½2 0.750 .875 1.000 1.125 1.250 1.500 1.750 2.000 2.250 2.750 3.000 3.250 3.500 3.750 4.000 5.000 ŝ 1.250 1.458 1.667 1.875 2.083 0.625 .729 .833 .938 1.042 2.292 2.500 2.708 3.125 3.333 3.750 4.167 2 0.500 .583 .667 .750 .833 1.000 1.167 1.333 1.500 1.667 1.833 2.000 2.167 2.333 2.500 2.667 3.000 3.333 3 0.375 .438 .500 .563 .750 .875 1.000 1.125 1.250 1.375 1.500 1.625 1.750 1.875 2.000 2.250 2.500 172 0.250 .292 .333 .375 .417 .917 1.000 1.083 1.167 500 583 667 667 833 833 1.333 1.500 1.667 Width Board. In. 1754.7 280 0

GOODMAN MINING HANDBOOK

Boiling Temperatures At Atmospheric Pressure

Degrees Fahrenheit and Centigrade

	Fahr. Degrees	Cent. Degrees		Fahr. Degrees	Cent. Degrees
Ammonia	140	60	Nitric Acid	248	120
Wood Alcohol	150	66	Turpentine	315	139
Grain Alcohol	173	79	Phosphorus	554	272
Benzine	176	80	Sulphur	570	281
Water	212	100	Sulphuric Acid.	590	292
Sea Water	213	101	Linseed Oil	597	296
Saturated Brine.	226	108	Mercury	676	340

Melting Temperatures

	Fahr. Degrees	Cent. Degrees		Fahr. Degrees	Cent. Degrees
Mercury	-39	39	Aluminum	1213	657
Turpentine		-10	Bronze	1652	900
Ice	32	0	Silver	1751	955
Nitroglycerine	45	7	Glass	1832	1000
Tallow	92	33	Brass	1859	1015
Phosphorus	112	44	Gold	1947	1064
Wax	150	6 6	Copper	1949	1065
Sulphur	239	115	Iron, White Pig	1967	1075
Tin		230	Iron, Gray Pig.	2192	1200
Bismuth	507	264	Steel	2507	1375
Lead	621	327	Nickel.	2732	1500
Zinc	787	419	Manganese	3452	1900
Antimonv	815	435	Platinum	3452	1900

Fusible Metals-Melting Temperatures

	Alloy				Alloy				
Tin	Lead	Bis- muth	Fahr. Degrees	Cent. Degrees	Tin	Lead	Bis- muth	Fahr. Degrees	Cent. Degrees
$\begin{array}{c}1\\1\\3\\5\\2\\3\\4\end{array}$	$ \begin{array}{c} 1\\ 1\\ 5\\ \dots\\ 3\\ 1\\ 1 \end{array} $	2 4 8 5 8 5 5 5 5	200 201 202 202 208 212 212 212 240	93 94 94 94 98 100 100 116	$\begin{array}{c} & 1 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \end{array}$				

Total Coal Contents of Seams of Different Thicknesses

,

Short Tons

Density of Coal Assumed as 1.28; or 25 Cubic Feet per Ton of 2,000 Pounds

Height of		Tons per	Dep	th of Unde	rcut
Coal.	Tons of Coal,	Square	5 Ft.	6 Ft.	7 Ft.
•	per Acre	Foot			
Inches		Undercut	Tons per	Lineal Foo	t of Face
24	3485	0.08	0.40	0.48	0.56
28	4070	.09	.47	.56	.65
32	4645	.11	.54	.64	.75
36	5225	.12	.60	.72	.84
40	5810	.133	.67	.80	.93
44	6390	.15	.73	.88	1.02
48	6970	.16	.80	.96	· 1.12
54	7840	.18	.90	1.08	1.26
60	8715	.20	1.00	1.20	1.40
66	9580	.22	1.10	1.32	1.54
72	· 10455	.24	1.20	1.44	1.68
78	11320	.26	1.30	1.56	1.82
84	12210	.28	1.40	1.68	1.96
90	13070	.30	1.50	1.80	2.10
96	13940	.32	1.60	1.92	2.24
100	14525	.333	1.67	2.00	2.33
104	15100	.347	ì.73	2.08	2.42
108	15680	.36	1.80	2.16	2.52
112	16260	.373	1.87	2.24	2.61
116	16845	.387	1.93	2.32	2.70
120	17425	.40	2.00	2.40	2.80
126	18295	.42	2.10	2.52	2.94
132	19165	.44	2.20	2.64	3.08
138	20040	.46	2.30	2.76	\ 3.22
144	20900	.48	2.40	2.88	3.36

Coal Fields of the United States

The coal areas of the United States are divided, for the sake of convenience, into two great divisions—anthracite and bituminous.

The areas in which anthracite is produced are confined almost exclusively to the eastern part of Pennsylvania. These fields, which are included in the counties of Susquehanna, Lackawanna, Luzerne, Carbon, Schuylkill, Columbia, Northumberland, Dauphin and Sullivan, underlie an area of about 480 square miles. Two small areas in the Rocky Mountain region, Gunnisson County, Colo., and Santa Fe County, N. M., have yielded a good quality of anthracite, though the production from these districts had never amounted to as much as 100,000 tons in any one year. Bristol, R. I., and Plymouth, Mass., have yielded some coal classed as anthracite.

The bituminous and lignite fields are scattered widely over the United States and include an area of something over 496,000 square miles. The lastest classification of these coal areas divides them into six provinces, as follows:

(1) The Eastern province: This includes all of the bituminous areas of the Appalachian region; the Atlantic coast region which includes the Triassic fields near Richmond, the Deep River and Dan River fields of North Carolina and the anthracite region of Pennsylvania.

(2) The Gulf province: This includes the lignite fields of Alabama, Mississippi, Louisiana, Arkansas and Texas.

(3) The Interior province: This includes all the bituminous areas of the Mississippi valley region and the coal fields of Michigan. This province is sub-divided into the eastern region, which embraces the coal fields of Illinois, Indiana and Western Kentucky; the western region, which includes the fields of Iowa, Missouri, Nebraska, Kansas, Arkansas and Oklahoma; and the southwestern region, which includes the coal fields of Texas. The Michigan fields are designated as the northern region of the Interior province.

(4) The Northern or Great Plains province: This includes the lignite areas of N. Dakota and S. Dakota, the bituminous and sub-bituminous areas of northwestern Wyoming and of northern and eastern Montana.

(5) The Rocky Mountain province: This includes the coal fields of the mountainous districts of Montana and Wyoming and all the coal fields of Utah, Colorado and New Mexico.

(6) The Pacific Coast province: This includes all of the cost fields of California, Oregon and Washington.

Coal Production in the United States

From the Earliest Times to the Close of 1918

So far as known the first mention of the occurrence of coal in the United States is made in the journal of Father Hennepin, a French Jesuit Missionary, who in 1679, recorded the site of a "cole mine" on the Illinois River, near the present city of Ottawa, Ill. The first actual mining of coal was in the Richmond Basin, Virginia, about 1750, although the first records of production from these mines are for the year 1822, when, according to one authority, 54,000 tons were mined. Ohio probably ranks second in priority of production, as coal was discovered there in 1755, though the records of production date back only to 1838.

The mining of anthracite in Pennsylvania began about 1790 and it is said that in 1807, 55 tons were shipped to Columbia, Pa. Reports of the anthracite coal trade are usually begun with the year 1820, when 365 long tons were shipped to Philadelphia from the Lehigh region. Prior to this, however, in 1814, a shipment of 22 tons was made from Carbondale to Philadelphia, and production may historically be considered as dating from that year.

Production and use of coal, both bituminous and anthracite, have continued from those early days at a constantly increasing rate as industry has created the market. The annual production, bituminous and anthracite combined, reached a hundred million tons in 1882, two hundred millions in 1897, three hundred in 1902, four hundred in 1906, five hundred in 1910 and six hundred millions nearly, in 1916. Then the war years of special effort yielded more than 650 million tons in 1917, and nearly 700 millions in 1918.

Coal Production for 1918

Early Estimate

For 1917 Production, see next page

-	Production 1918	Increase	Decrease from 1917	Percentage 1918 over 1917		
State	(Estimate) Short Tons	over 1917, Short Tons	Short Tons	In- crease	.De- crease	
Alabama	21,280,000	1,212,000		6.0		
Arkansas	2,228,000	84,000		4.0		
Colorado	12,485,000	2,000		0.0		
Georgia	101,000		18,000		15.0	
Illinois	91,263,000	5.064.000		6.0		
Indiana	27,325,000	785,000		3.0		
Iowa	8,240,000		725,000		8.0	
Kansas	7,392,000	107,000		1.5		
Kentucky	29,690,000	1,882,000		7.0		
Maryland	4,759,000	13,000		0.3		
Michigan	1,385,000	10,000		0.7		
Missouri	5,605,000		56,000		1.0	
Montana	4,276,000	49,000		1.0		
New Mexico	4,241,000	241,000		6.0		
North Dakota.	813,000	23,000		3.0		
Ohio	46,464,000	5,715,000		14.0		
Oklahoma	4,785,000	318,000		9.0		
Pennsylvania	183,712,000	11.264.000		6.5		
Tennessee	6,916,000	722.000		12.0		
Texas	2,260,000	,	96,000		4.0	
Utah	5,535,000	1,410,000		34.0		
Virginia	10,100,000	13.000		0.1		
Washington	4,056,000	46,000		1.0		
West Virginia.	91,350,000	4,908,000		6.0		
Wyoming	9,600,000	1,024,000		12.0		
Alaska	.10001000	2,021,000				
California	1					
Idaho	122,000	25,000				
Oregon		,		•••••		
South Dakota						
Total Bit	585,883,000	34,092,000		6.2		
Penna. Anth.	99,473,000		138,000		101	
Grand Total	685,356,000	33,954,00	0	5.	2 \	
			1			
1		1	\	1		

112

Men Employed and Days Worked

To Yield the Coal Production of 1917

	Total	Nu	Average		
State	Production Short Tons	Under- ground	On Surface	Total	Number of Days Worked
Alabama	20.069.074	00.005		00 200	072
Alabama Alaska	20,068,074 53,955	22,925	5,461	28,386	273
Arkansas	2,143,579	3,135	· 863	3,998	187
Cal. & Idaho	6,423		6	17	173
Colorado	12,483,336		2,946	14,231	263
Georgia	119,028		76	281	269
Illinois	86,199,387	75,085	9,005	84,090	243
Indiana	26,539,329	22,664	3,864	26,528	221
lowa	8,965,830	12,672	1,594	14,266	251
Kansas	7,184,975	8,816	1,864	10,680	216
Kentucky	27,807,971	28,162	6,764	34,926	- 214
Maryland	4,745,924	4,696	1,223	5,919	254
Michigan	1,374,805	2,154	252	2,406	254
Montana	5,670,549 4,226,689	7,680 3,338	1,988 811	9,668	240
New Mexico	4,000,527	3,338	935	4,149 4,126	268
North Dakota.	790,548	619	202	821	255
Dhio.	40,748,734	38,569	6.940	45,509	210
)klahoma	4,386,844	7.017	1,478	8,495	211
Dregon	28,327	77	27	104	251
Penna. (Bit.)	172,448,142	143,687	30,281	173,968	261
outh Dakota.	8.042	34	0	34	154
ennessee	6,194,221	8,053	2,368	10,421	241
exas	2,355,815	3,683	692	4,375	263
Jtah	4,125,230	. 2,569	916	3,485	219
lirginia	10,087,091	8,607	2,561	11,168	273
Washington	4,009,902	4,072	1,240	5,312	271
West Virginia	86,441,667	69,155	19,267	88,422	225
Wyoming	8,575,619	6,024	1,334	7,358	246
Cotal Bit	551,790,563	498,185	104,958	603,143	243
Penna, Anth.	99,611,811	109,989	44,185	154,174	285
rand Total	651,402,374	680,174	149,143	757,317	251

*Not available.

Production of Coke In the United States, 1917 and 1918

(Early Estimates, 1918)

State		Production Short Tons			
	1917	1918	Increase	Decrease	
	Beehive (Coke			
Alabama	2,151,828	2,566,000	19.2		
Colorado	1,112,449	771,000		30.7	
Georgia	39,589	24,000		40.6	
Kentucky	331,532	329,000		0.9	
New Mexico	577,679	588,000	1.9		
Ohio	147,826	132,000		10.6	
Oklahoma		45,000			
Pennsylvania	23,816,420	21,031,000		11.7	
Cennessee	376,080	419,000	11.4		
Virginia	1,304,230	1,255,000		3.8	
West Virginia	2,838,728	2,634,000		7.2	
Utah and Wash	471,187	612,000			
		and the second second			
Total	33,167,548	30,406,000		8.3	
and the states	By-Produc	t Coke	_	_	
Alabama	2,740,761	2,676,000	A	2.4	
llinois	2,289,833	2,278,000		0.6	
ndiana	3,540,718	3,870,000	9.3		
Kentucky	531,539	522,000		1.8	
Maryland	518,810	477,000		8.1	
Massachusetts	595,113	542,000		8.9	
Minnesota	490,272	742,000	51.4		
New York	993,184	1,086,000	9.3		
Ohio	3,546,476	5,283,000			
Pennsylvania	4,095,605	4,691,000			
Fennessee	35,246	121,000			
Washington	26,346	30,000			
Wast Virginia	511,033	612,000	19.7		
West Virginia) 511,055	012,000	19.1		
Colorado					
Michigan	0 504 244	2 224 000	22.4	1	
Missouri	2,524,344	3,334,000	32.1		
New Jersey Wisconsin		1.1.1.1	1. A.		
Total	22,439,280	26,264,000	17.0		
Grand Total	55,606,828	56,670,000			
Grand Total,	33,000,828	20,010,000	1 1.9	1	

Percentages of Grand Totals -59.6% By-Product:

Beehive: 1917—59.6% 1918—53.6%

1917-40.4% 1918-46.4%

114

Mining Machines Used in Bituminous Coal Production

State	Number of Mining Machines in Use	Coal Mined by Machines, Short Tons	Total Production Short Tons	Percent- age Mined by Machines
Alabama	320	5,802,150	18,086,197	32.1
Arkansas	20	224,245	1,994,915	11.2
Colorado	305	3,342,345	10,484,237	31.9
Illinois	1.938	40,791,408	66,195,336	
Indiana	661	11,367,758	20,093,528	56.6
Iowa	56	636,892	7,260,800	
Kansas		37,897	6,881,455	
Kentucky		21,441,700	25,393,997	
Maryland		221,609	4,460,046	
Michigan	104	1,044,583	1,180,360	
Missouri	93	947,811	4,742,146	
Montana		2,024,799	3,632,527	
New Mexico		510,219	3,793,011	
North Dakota	13	218,276	634.912	
Ohio	1.604	31,669,049	34,728,219	91.1
Oklahoma	167	1,258,022	3,608,011	
Pennsylvania		94,391,391	170,295,424	
Tennessee		1,517,426	6,137,449	
Texas	10	19,000	1,987,503	
Utah	78	2,050,405	3,567,428	
Virginia	194	6,011,262	9,707,474	
Washington	55	277,236	3,038,588	
West Virginia	2,702	54,408,511	86,460,127	
Wyoming	192	3,477,081	7,910,647	-44.0
Other States		400	71,791	
Total		283,691,475	502,519,682	

By States for the Year 1916

*Average percentage.

In the United States, 1891-1916

Year	Number of Machines in Use	Coal Mined by Machines, Short Tons	Year	Number of Machines in Use	Coal Mined by Machines, Short Tons
1891	545	6,211,732	1906	10,212	118,847,527
1896	1,446	16,424,932	1911.	13,829	178,158,236
1901	4,341	57,843,335	1916.	16,197	283,691,475

Disposal of Coal Produced

In the United States, 1916

State	Loaded at Mines for Shipment, Short Tons	Sold to Local Trade and Used by Employees Short Tons	Used at Mines for Steam and Heat, Short Tons	Made into Coke at Mines, Short Tons
Alabama	14,422,356	390,682	587,211	2,685,948
Alaska	7,913		62	
Arkansas	1,881,105		69,556	
Cal. and Idaho	1,593		1,000	
Colorado	8,057,820	396,376	271,484	1,758,557
Georgia	76,954		7,200	87,728
Illinois	61,486,342	3,086,157	1,622,837	
Indiana	18,839,568	790,345	463,615	
Iowa	6,521,770	591,717	147,313	
Kansas	6,577,064		159,338	
Kentucky	23,473,421	783,268		652,567
Maryland	4,320,720	74,113	65,213	
Michigan	1,097,107		31,483	
Missouri	4,219,414	435,868	86,864	
Montana. :	3,350,665	142,130	139,732	
New Mexico	2,873,313		25,194	844,083
North Dakota	440,752	173,936	20,224	
Ohio	31,995,913	2,123,678	607,908	720
Oklahoma	3,395,363		178,648	
Oregon	28,373	7,482	6,737	
Penna. (Bit.)	123,181,649	4,212,186	3,375,483	39,526,100
South Dakota	891	7,995	*******	
Tennessee	5,266,733	99,289	174,093	597,334
Texas	1,939,947	17,670	29,886	
Utah	2,686,880	65,260	78,435	736,853
Virginia	7,513,641	156,730	113,376	1,923,727
Washington	2,701,031	75,954	124,740	136,863
West Virginia	79,760,681	1,768,827	1,171,205	3,759,414
Wyoming	7,547,706	96,055	266,886	
Total Bit	423,666,685	15,832,633	10,310,464	52,709,900
Penna. Anth	75,601,526		9,760,880	
Grand Total Percentage of: Total Production	499,268,211	18,048,720	20,071,344	52,709,900
Bituminous	84.3	3.	2 2	1 10.
Penna. Anth.	86.3		-	

Copper Fields of the United States

There are several methods of classifying copper deposits; namely, according to the geologic period of deposit, the geologic occurrence, and the geographic distribution.

According to Geologic Age

1. Pre-Cambrian, the larger producers of which have been the Lake Superior district of Michigan, the Jerome of Arizona and the Encampment of Wyoming. The deposits of this age yield about one-third of the total output of the country.

2. Paleozoic, the most important producers of which are the Ducktown district of Tennessee, the Great Gossan lead of Virginia and North Carolina, the Virgilina district, and the Ely of Vermont. These are usually classed as the Appalachian deposits.

deposits. 3. Mesozoic, consisting chiefly of the Shasta district and the "foothils" of California, together with numerous districts of Idaho, eastern Washington, western Nevada and Alaska. The deposits of this age yield about one-fourth of the country's output.

4. Tertiary, largely found in Montana, Arizona, New Mexico and Utah. This is considered the most important of the epochs of copper deposition, it giving almost half the output of this country.

According to Occurrence

1. Lenticular replacements in schistose and igneous rocks, found in Arizona and California, and to a small extent in the Appalachian region.

2. Native copper in volcanic rocks, which is the kind chiefly found in the Lake Superior district of Michigan.

3. Replacement deposits in sedimentary rocks, usually found in Arizona, Nevada, Utah and Alaska.

4. Disseminated deposits, occurring chiefly in Utah, Nevada and Arizona; not of very high grade, but usually cheap to mine.

5. Fissure-vein deposits, which are the chief sources of copper and are mostly found at Butte, Montana.

6. Disseminated deposits of sedimentary rocks, found mostly in Texas, New Mexico and Arizona.

Geographic Distribution

Copper is present in some form or other in almost every State in the Union. According to smelter returns, the leading States are Arizona, Montana and Michigan.

Although our copper industry is still young, the United States is, at present, supplying more than half of the world's production.

Copper Production In the United States, 1916 and 1917

By States

State	Produ Pou	Percentage, 1917 over 1916		
	1916 1917		Increase	Decrease
Alaska	113,823,064	84,759,086		25.6
Arizona	694,847,307	719,035,514		
California	43,400,876			
Colorado	9,536,193			
Georgia	803,699			
Idaho	7,248,794			11.1
Maine		34.872		
Maryland	126,965			
Michigan	269,794,531	268,508,091		.5
Missouri	377.575			
Montana	352,139,768			21.5
Nevada	100,816,724	115,028,161	14.1	
New Jersey	4,115			
New Mexico	79,863,439		34.7	
North Carolina	5,961			
Oregon	2,433,567			54.6
Pennsylvania	904	115.000		
South Carolina	,01			
Tennessee	14,556,278			
Texas	86,463	2,061,129		
Utah	232,335,950	227.840.447		1.9
Vermont	324,400	102,522		
Virginia	1,066,143			
Washington	2,473,481			17.1
Wyoming	1,784,351	2,019,767		
Total	1,927,850,548	1,886,120,721		2.17

Imports and Exports

Of Copper in all Forms, 1916 and 1917

	1916, Pounds	1917. Pounds	Percentage Increase 1917 over 1916
Imports	462,335,980	0 556,420,29	20.4
Exports	789,791,25	4 1,131,872,9	27 43.3

Copper Production and Disposal In the United States, 1907-1917 Domestic Production

Year	Refined Copper, Primary, Pounds	Secondary Copper, Pounds	Smelter Pro- duction, Domestic Ores, Pounds
1907 1908 1909	1,032,500,000 1,137,900,000 1,391,000,000		868,900,000 942,500,000 1,092,900,000
1910 1911 1912	1,422,000,000 1,433,800,000 1.568,100,000	214,000,000	
1913 1914 1915.	1,615,000,000 1,533,700,000 1.634,200,000	273,000,000 255,700,000	1,224,000,000 1,150,000,000
1916 1917	2,259,000,000 2,428,000,000		

Imports, Exports and Consumption

Year	Imports, Pounds	Exports of Metallic Copper, Pounds	Domestic Con- sumption, Pounds
1907	$\begin{array}{c} 252,600,000\\ 218,700,000\\ 321,800,000\\ 344,000,000\\ 410,000,000\\ 410,000,000\\ 408,700,000\\ 306,000,000\\ 315,600,000\\ 462,000,000\\ 556,000,000 \end{array}$	661,800,000 682,800,000 708,000,000 786,500,000 775,000,000 926,000,000 840,000,000 681,900,000 784,000,000	479,900,000 688,500,000 732,000,000 681,700,000 755,900,000 812,000,000 620,000,000 1,043,000,000 1,430,000,000

Average Yearly Prices

Year	Per Pound	Year	Per Pound	Year	Per Pound	Year	Per Pound
	0.200 .132 130	1910 1911 1912	\$0.127 .125 .165	1913 1914 1915		1917	

118

ļ

Iron Mining in the United States

The classification of the iron deposits is usually made by dividing the country into six geographic districts, namely: 1. Northeastern District—Massachusetts, Connecticut, New

York, New Jersey, Pennsylvania and Ohio. 2. Southeastern District—Maryland, Virginia, West Virginia, Kentucky, Tennessee, North Carolina, Georgia and Alabama.

3. Lake Superior District-Michigan, Wisconsin and Minnesota

Mississippi Valley District-Iowa, Mississippi, Missouri, 4. Arkansas and Texas.

Rocky Mountain District-Idaho, Montana, Wyoming, 5. Colorado, New Mexico, Utah and Nevada.

Pacific Slope District-Washington and California. 6.

The Lake Superior district is by far the most important, pro-ducing nearly 85 percent of the total output of the United States. · * .

Classes of Ore

Each of the above districts can be further subdivided into mining districts, and the ores classified with regard to variety and distribution of the deposits:

1. Hematite—Known locally as red hematite, specular ore, gray ore, fossile ore, etc. This is the most important variety, constituting more than 90 percent of the United States' production. ्रा

Brown ore-Known also as brown hematite, bog ore, 2. limonite, etc. This variety usually comes from the Appalachian States and constitutes less than 3 percent of the total.

3. Magnetite-Usually called magnetic iron ore. Comes mostly from the Northeastern district, except Ohio, and constitutes less than 4 percent of the total.

4. Iron carbonate—Known locally as spathic iron ore, kidney ore, black band ore, etc. This is the least significant of the ores and comes principally from Ohio.

The Iron Ranges

The Lake Superior district includes the Vermilion, Mesabi, Cuyuna, Gogebic, Marquette and Menominee ranges. In addition to these there are several iron ore districts on the Canada side of the Great Lakes, the principal ones being the Michi-picoten, Animikie, Matawin and the Atikokan ranges. The Mesabi range, within the Superior district, produced more than half of the entire output for the United States

during the year 1917.

The iron mined in the United States amounts to new double that mined in any other country.

Iron Ore Production

In the United States, 1916 and 1917

By States

In Order of their Producing Rank, 1917

State	Produc Long	Percentage 1917 over 1916		
	1916	1917	Increase	Decrease
Minnesota Michigan Alabama New York Wisconsin Pennsylvania Tennessee New Jersey Virginia New Mexico Georgia North Carolina Utah Missouri Iowa Maryland West Virginia California Nevada Ohio	$\begin{array}{c} 44,585,422\\ 18,071,016\\ 6,747,901\\ 1,342,507\\ 1,304,518\\ 559,431\\ 545,774\\ 455,834\\ 493,004\\ 440,492\\ 157,779\\ 256,949\\ 64,306\\ 45,514\\ 34,914\\ 11,351\\ 4,455\\ 3,605\\ 3,000\\ 9,910\\ 1,800\\ \end{array}$	$\begin{array}{c} 44,595,232\\ 17,868,601\\ 7,037,707\\ 1,304,317\\ 1,202,235\\ 546,700\\ 543,846\\ 508,529\\ 489,943\\ 469,903\\ 237,221\\ 226,630\\ 90,997\\ 48,058\\ 38,908\\ 22,612\\ 11,830\\ 4,632\\ 2,207\\ 1,010\\ 0\end{array}$	0.02 4.3 11.6 50.4 41.5 5.6 11.4 99.2 165.5 28.5	1.1 2.8 7.8 2.3 0.4 0.6 11.8 26.4 89.8 100.0
Other States* Total	28,190 75,167,672	37,733 	33.8 0.16	·····

*1916-Colorado, Connecticut, Massachusetts.

*1917—Arkansas, Colorado, Connecticut, Massachusett: Montana.

Iron Ore Production In the United States, 1916 and 1917 By Districts

In Order of their Producing Rank

	Produc Long 7	Percentage 1917 over 1916		
District	1916	1917	Increase	Decrease
Lake Superior Birmingham Adirondack Chattanooga Northern New Jer-	63,735,088 5,976,918 1,077,638 836,623	63,481,321 6,187,073 1,100,001 821,485		0.39
sey and South- easternNewYork Other Districts Total	683,150 2,859,155 75,167,672	642,232 3,056,739 75,288,851	6.91 0.16	5.99

By	Ranges	in L	ake	Superi	ior	Dis	trict	
In	Order of	their	Pro	ducing	Ra	nk.	1017	

Range	1916	1917	Perce 1917 or	entage ver 1916
Kange	Long Tons	Long Tons	Increase	Decrease
Mesabi Gogebic Menominee Marquette Cuyuna Vermilion	41,325,341 7,707,101 6,649,578 4,792,987 1,555,641 1,704,440	41,127,323 7,881,232 6,366,483 4,638,374 1,986,608 1,481,301	2.26 	0.48 4.26 3.22 13.09
Total	63,735,088	63,481,321	•••••	0.4

Largest Iron Ore Mines

Eleven mines in the United States produced more than 1,000,-000 tons of iron ore each in 1917. First place was held by the Hull-Rust mine at Hibbing, Minn.; second place by the Red Mountain group near Bessemer, Ala.; third place by the Mahon-ing mine at Hibbing, Minn.; fourth place by the Rayal mine at Eveleth, Minn. The production of these mines was respec-tively, 6,468,483, 2,955,022, 2,525,145 and 2,022,816 tons.

Decimals of a Foot, in Inches and Decimals

If common fractions of inches are wanted, convert the fractional parts of inches in this table by use of table on following page.

Foot	Inches	Foot	Inches	Foot	Inches
0.01	0.12	0.36	4.32	0.71	8.52
.02	.24	.37	4.44	.72	8.64
.03	.36	.38	4.56	.73	8.76
.04	.48	.39	4.68	.74	8.88
.05	.6	.40	4.8	.75	9.
.06	.72	.41	4.92	.76	9.12
.07	.84	.42	5.04	.77	9.24
.08	.96	.43	5.16	.78	9.36
.09	1.08	.44	5.28	.79	9.48
.10	1.2	.45	5.4	.80	9.6
. 11	1.32	.46	5.52	.81	9.72
. 12	1.44	.47	5.64	.82	9.84
. 13	1.56	.48	5.76	.83	9.96
. 14	1.68	.49	5.88	.84	10.08
. 15	1.8	.50	6.	.85	10.2
. 16	1.92	.51	6.12	.86	10.32
. 17	2.04	.52	6.24	.87	10.44
. 18	2.16	.53	6.36	.88	10.56
. 19	2.28	.54	6.48	.89	10.68
. 20	2.4	.55	6.6	.90	10.8
. 21	2.52	. 56	6.72	.91	10.92
. 22	2.64	. 57	6.84	.92	11.04
. 23	2.76	. 58	6.96	.93	11.16
. 24	2.88	. 59	7.08	.94	11.28
. 25	3.	. 60	7.2	.95	11.4
. 26	3.12	.61	7.32	.96	11.52
. 27	3.24	.62	7.44	.97	11.64
. 28	3.36	.63	7.56	.98	11.76
. 29	3.48	.64	7.68	.99	11.88
. 30	3.6	.65	7.8	1.00	12.
.31 .32 .33 .34 .35	3.72 3.84 3.96 4.08 4.2	.66 .67 .68 .69 .70	7.92 8.04 8.16 8.28 8.4		

Decimal Equivalents of Common Binary Fractions

-By 64ths-

Common Fraction	Decimal	Common Fraction	Decimal
$\frac{1}{32}$	0.015625 .03125 .046875 .0625	$\frac{33}{64}$	0.515625 .53125 .546875 .5625
5 32 64 32	.078125 .09375 .109375 .125	87 193 193 193 193	.578125 .59375 .609375 .625
₹	.140625	81	.640625
52	.15625	83	.65625
164	.171875	83	.671825
15	.1875	18	.6875
88	.203125	#1	.703125
373	.21875	#3	.71875
85	.234375	#1	.734375
(.25	34	.75
17	.265625	82	.765625
822	.28125	35	.78125
18	.296875	82	.796875
16	.3125	18	.8125
81 11 11 11 11	.328125 .34375 .359375 .375	83 83 78	.828125 .84375 .859375 .875
84	.390625	57	.890625
13 2	.40625	39	.90625
87	.421875	59	.921875
16	.4375	15	.9375
88	.453125	₩	.953125
15	.46875		.96875
81	.484375		.98437
81	.5		

Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas From .1 to 120; by Tenths to 10

For Circles by Eighths, see pages 130 and 131.

Number			Square	Cube	Cir	cle
or Diam.	Square	Cube	Root	Root	Circum.	Area
.1	0.01	0.001	0.316	0.464	0.314	0.00785
.2	.04	.008	.447	.585	.628	.0314
.3	.09	.027	.548	.669	.942	.0707
.4	.16	.064	.633	.737	1.257	.126
.5	.25	.125	.707	.794	1.571	. 196
.6	.36	.216	.775	.843	1.885	. 283
.7	.49	.343	.837	.888	2.199	. 385
.8	.64	.512	.894	.928	2.513	. 503
.9	.81	.729	.949	.960	2.827	. 636
1.	1.	1.	1.	1.	3.142	.785
.1	1.21	1.331	1.049	1.032	3.456	.950
.2	1.44	1.728	1.095	1.063	3.770	1.131
.3	1.69	2.197	1.140	1.091	4.084	1.327
.4	1.96	2.744	1.183	1.119	4.398	1.539
.5	2.25	3.375	1.225	1.145	4.712	1.767
.6	2.56	4.096	1.265	1.170	5.027	2.011
.7	2.89	4.913	1.304	1.193	5.341	2.270
.8	3.24	5.832	1.342	1.216	5.655	2.545
.9	3.61	6.859	1.378	1.239	5.970	2.835
2.	4.	8.	1.414	1.260	6.283	3.142
.1	4.41	9.261	1.449	1.281	6.597	3.464
.2	4.84	10.648	1.483	1.301	6.912	3.801
.3	5.29	12.167	1.517	1.320	7.226	4.155
.4	5.76	13.824	1.549	1.339	7.540	4.524
.5	6.25	15.625	1.581	1.357	7.854	4.909
.6	6.76	17.576	1.612	1.375	8.168	5.309
.7	7.29	19.683	1.643	1.392	8.482	5.726
.8	7.84	21.952	1.673	1.409	8.797	6.158
.9	8.41	24.389	1.703	1.426	9.111	6.605
3.	10.89	27.	1.732	1.442	9.425	7.069
.1		29.791	1.761	1.458	9.739	7.548
.2		32.768	1.789	1.474	10.053	8.043
.3		35.937	1.817	1.489	10.367	8.553
.4		39.304	1.844	1.504	10.681	9.079

From .1 to 120; by Tenths to 10.

Square Root Number Cube Circle Square Cube Root or Diam. Circum. Area 10.996 11.310 42.875 1.871 1.518 3.5 12.25 9.621 .6 12.96 46.656 1.897 1.533 10.179 .7 13.69 50.653 1.924 1.547 11.624 10.752 1.949 . 8 14.44 54.872 1.560 11.938 11.341 .9 15.21 59.319 1.975 1.574 12.252 11.946 4. 64. 2. 1.587 12.566 16. 12.566 16.81 68.921 2.025 1.601 .1 12.881 13.203 .2 17.64 74.088 2.049 1.613 13.195 13.854 18.49 2.074 1.626 .3 79.507 13.509 14.522 .4 19.36 85.184 2.098 1.639 13.823 15.205 . 5 20.25 91.125 2.121 1.651 15.904 14.137 1.663 2.145 .6 97.336 21.16 14.451 16.619 .7 22.09 103.823 2.168 1.675 14.765 17.349 . 8 110.592 2.191 1.687 15.080 23.04 18.096 117.649 .9 24.01 2.214 1.698 15.394 18.857 5. 1.710 25. 125. 2.236 15.708 19.635 1.721 .1 132.651 2.258 26.01 16.022 20.428 .2 27.04 140.608 2.280 1.732 16.336 21.237 28.09 16.650 .3 148.877 2.302 1.744 22.062 .4 29.16 157.464 2.324 1.754 16.965 22.902 .5 30.25 166.375 2.345 1.765 17.279 23.758 .6 17.593 31.36 175.616 2.366 1.776 24.630 .7 2.387 32.49 185.193 1.786 17.907 25.518 . 8 1.797 26.421 27.340 33.64 195.112 2.408 18.221 205.379 2.429 1.807 .9 34.81 18.535 2.450 1.817 18.850 36. 216. 6. 28.274 .1 37.21 226.981 2.470 2.490 1.827 19.164 29.225 1.837 .2 38.44 238.328 19.478 . 30.191 .3 39.69 2.510 1.847 19.792 250.047 31.173 2.530 1.857 40.96 20.106 .4 262.144 32.170 . 5 1.866 2.550 42.25 274.625 20.420 33.183 43.56 .6 287.496 2.569 1.876 20.134 34.212 35.257 36.317 37.39 1.885 .7 44.89 300.763 2.588 21.049 21.363 . 8 46.24 314.432 2.608 1.895 21.677 .9 47.61 328.509 2.627 1.904

For Circles by Eighths, see pages 130 and 131.

From .1 to 120; by Tenths to 10.

For Circles by Eighths, see pages 130 and 131.

Number	Square	Cube	Square Root	Cube Root	Cir	cle
_Diam.	oquare	Cube	Root	Root	Circum.	Area
7.	49.	343.	2.646	1.913	21.991	38.485
.1	50.41	357.911	2.665	1.922	22.305	39.592
.2	51.84	373.248	2.683	1.931	22.619	40.715
.3	53.29	389.017	2.702	1.940	22.934	41.854
.4	54.76	405.224	2.720	1.949	23.248	43.008
• .5	56.25	421.875	2.739	1.957	23.562	44.179
.6	57.76	438.976	2.757	1.966	23.876	45.365
.7	59.29	456.533	2.775	1.975	24.190	46.566
.8	60.84	474.552	2.793	1.983	24.504	47.784
.9	62.41	493.039	2.811	1.992	24.819	49.017
8.	64.	512.	2.828	2.	25.133	50.266
. 1	65.61	531.441	2.846	2.008	25.447	51.530
. 2	67.24	551.368	2.864	2.017	25.761	52.810
.3	68.89	571.787	2.881	2.025	26.075	54.106
.4	70.56	592.704	2.898	2.033	26.389	55.418
.5	72.25	614.125	2.915	2.041	26.704	56.745
.6	73.96	636.056	2.933	2.049	27.018	58.088
.7	75.69	658.503	2.950	2.057	27.332	59.447
.8	77.44	681.472	2.966	2.065	27.646	60.821
.9	79.21	704.969	2.983	2.072	27.960	62.211
9.	81.	729.	3.	2.080	28.274	63.617
.1	82.81	753.571	3.017	2.088	28.588	65.039
.2	84.64	778.688	3.033	2.095	28,903	66.476
.3	86.49	804.357	3.050	2.103	29.217	67.929
.4	88.36	830.584	3.066	2.110	29.531	69.398
.5	90.25	857.375	3.082	2.118	29.845	70.882
.6	92.16	884.736	3.098	2.125	30.159	72.382
.7	94.09	912.673	3.114	2.133	30.473	73.898
.8	96.04	941.192	3.130	2.140	30,788	75.430
.9	98.01	970.299	3.146	2.147	31.102	76.977
10.	100.	1000.	3.162	2.154	31.416	78.540
11.	121.	1331.	3.317	2.224	34.558	95.033
12.	144.	1728.	3.464	2.289	37.699	113.10
		2197.	3.404	2.351	40.841	132.73
		2197. 2744.	3.742	2.410	1	
/	/	-		1	1	

From .1 to 120; by Tenths to 10.

For Circles by Eighths, see pages 130 and 131.

Number	0	Cube	Square Root	Cube Root	Ci	rcle
or Diam.	Square	Cube	Root	Root	Circum.	Area
15	225	3375	3.873	2.466	47.124	176.71
16	256	4096	4.	2.520	50.265	201.06
17	289	. 4913	4.123	2.571	53.407	226.98
18	324	5832	4.243	2.621	56.549	254.47
19 ·	361	6859	4.359	2.668	59.690	283.53
20	400	8000	4.472	2.714	62.832	314. 16
21	441	9261	4.583	2.759	65.973	346.36
22	484	10648	4.690	2.802	69.115	380.13
23	529	12167	4.796	2.844	72.257	415.48
24	576	13824	4.899	2.885	75.398	452.39
25	625	15625	5.	2.924	78.540	490.87
26	676	17576	5.099	2.963	81.681	530.93
27	729	19683	5.196	3.	84.823	572.56
28	784	21952	5.292	3.037	87.965	615.75
• 29	841	24389	5.385	3.072	91.106	660.52
30	900	27000	5.477	3.107	94.248	706.86
31	961	29791	5.568	3.141	97.389	754.77
· 32	1024	32768	5.657	3.175	100.53	804.25
33	1089	35937	5.745	3.208	103.67	855.30
34	1156	39304	5.831	3.240	106.81	907.92
35	1225	42875	5.916	3.271	109.96	962.11
36	1296	46656	6.	3.302	113.10	1017.88
37	1369	50653	6.083	3.332	116.24	1075.21
38	1444	54872	6.164	3.362	119.38	1134.11
- 39	1521	59319	6.245	3.391	122.52	1194.59
40	1600	64000	6.325	3.420	125.66	1256.64
41	1681	68921	6.403	3.448	128.81	1320.25
42	1764	74088	6.481	3.476	131.95	1385.44
43	1849	79507	6.557	3.503	135.09	1452.20
44	1936	85184	6.633	3.530	138.23	1520.53
45	2025	91125	6.708	3.557	141.37.	1590.43
46	2116	97336	6.782	3.583	144.51	1661.90
47 ·	2209	103823	6.856	3.609		1
48	2304	110592	6.928	3.634		
49	2401	117649	7.	3.65	9 153.	94 10001

From .1 to 120; by Tenths to 10.

For Circles by Eighths, see pages 130 and 131.

Number	Saucas	Cube	Square Root	Cube Root	Cir	cle
Diam.	Square	Cube		Root	Circum.	Area
50	2500	125000	7.071	3.684	157.08	1963.50
51	2601	132651	7.141	3.708	160.22	2042.82
52	2704	140608	7.211	3.733	163.36	2123.72
53	2809	148877	7.280	3.756	166.50	2206.18
54	2916	157464	7.348	3.780	169. 6 5	2290.22
55	3025	166375	7.416	3.803	172.79	2375.83
56	3136	175616	7.483	3.826	175.93	2463.01
57	3249	185193	7.550	3.849	179.07	2551.76
58	3364	195112	7.616	3.871	182.21	2642.08
59	3481	205379	7.681	3.893	185.35	2733.97
60	3600	216000	7.746	3.915	188.50	2827.43
61	3721	226981	7.810	3.937	191.64	2922.47
62	3844	238328	7.874	3.958	194.78	3019.07
63	3969	250047	7.937	3.979	197.92	3117.25
64	4096	262144	8.	4.	201.06	3216.99
65	4225	274625	8.062	4.021	204.20	3318.31
66	4356	287496	8.124	4.041	207.34	3421.19
67	4489	300763	8.185	4.062	210.49	3525.65
68	4624	314432	8.246	4.082	213.63	3631.68
69	4761	328509	8.307	4.102	216.77	3739.28
70	4900	343000	8.367	4.121	219.91	3848.45
71	5041	357911	8.426	4.141	223.05	3959.19
72	5184	373248	8.485	4.160	226.19	4071.50
73	· 5329	389017	8.544	4.179	229.34	4185.39
74	5476	405224	8.602	4.198	232.48	4300.84
75	5625	421875	8.660	4.217	235.62	4417.86
76	5776	438976	8.718	4.236	238.76	4536.46
77	5929	456533	8.775	4.254	241.90	4656.63
78	6084	474552	8.832	4.273	245.04	4778.36
79	6241	493039	8.888	4.291	248.19	4901.67
80	6400	512000	8.944	4.309	251.33	5026.55
81	6561	531441	9.	4.327	254.47	5153.00
82	6724	551368	9.055	4.345	\ 257.6 1 '	5281.02
83	6889	571787	9.110	4.362	260.75	
84	7056	592704	9.165	4.380	263.8	9 \ 5541.77
					1	

Squares, Cubes, Square Roots, Cube Roots, Circumferences and Areas From .1 to 120; by Tenths to 10.

Number	C	0.1.	Square	Cuba	Cir	cle
or Diam.	Square	Cube	Root	Cube Root	Circum.	Area
85	7225	614125	9.220	4.397	267.04	5674.50
86	7396	636056	9.274	4.414	270.18	5808.80
87	7569	658503	9.328	4.431	273.32	5944.68
· 88	7744	681472	9.381	4.448	276.46	6082.12
89	7921	704969	9.434	4.465	279.60	6221.14
90	8100	729000	9.487	4.481	282.74	6361.73
91	8281	753571	9.539	4.498	285.88	6503.88
92	8464	778688	9.592	4.514	289.03	6647.61
93	8649	804357	9.644	4.531	292.17	6792.91
94	8836	830584	9.695	4.547	295.31	6939.78
95	9025	85737 5	9.747	4.563	298.45	7088.22
96	9216	884736	9.798	4.579	301.59	7238.23
97	9409	912673	9.849	4.595	304.73	7389.81
98	9604	941192	9.900	4.610	307.88	7542.96
99	9801	970299	9.950	4.626	311.02	7697.69
100	10000	1000000	10.	4.642	314.16	7853.98

For Circles by Eighths, see pages 130 and 131.

FOR NUMBERS LARGER THAN IN TABLES:

SQUARE. To find square of any number 10 times as large as one in table, find square of table number and multiply by the square of 10. Same principle applies for any divisor, as well as for 10. E. g.: Square of 252 = quare of $34 \times$ square of $3 = 7056 \times 9 = 63504$.

CUBE. To find Cube of any number 10 times as large as one in table find cube of table number and multiply by the cube of 10. Same prin ziple applies for any divisor, as well as for 10. E. g.: Cube of 252 = cube of 84 x cube of $3 = 592704 \times 27 = 16,003,008$.

CIRCUMFERENCE. To find Circumference of any circle of diameter 10 times as large as one in table, find circumference for table diameter and multiply by 10. Same principle applies for any divisor, as well as for 10. E. g.: Circumference for diameter 252 = circumference for diameter 84 times $3 = 263.89 \times 3 = 791.67$.

AREA. To find Area of any circle of diameter 10 times as large as one a table, find area for table diameter and multiply by square of 10. Same rinciple applies for any divisor, as well as for 10. E. g.: Area for diameter $2 = area for 84 \times square of 3 = 5541.77 \times 9 = 49875.93$.

Circumferences and Areas of Circles

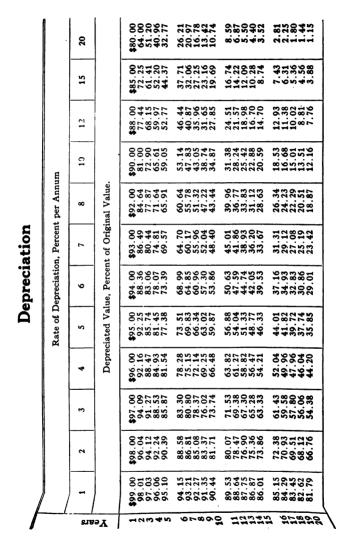
Diameters Advancing by Eighths to 17½

Diameters by Tenths, and up to 100, see pages 124 to 129.

Diam.	Circum.	Area	Diam.	Circum.	Area
			41/2	14.137	15.904
1/8	0.393	0.012	5/8	14.530	16.800
1/4	.785	.050	3/4	14.923	17.721
3/0	1.178	.110	7/8	15.315	18.665
1/2	1.571	.196	10		1.000
3/2/8/4/8	1.964	.307	5	15.708	19.635
3/4	2.356	.442	1/0	16.101	20.629
7%	2.749	.601	14	16.493	21.648
10			3%	16.886	22.691
1	3.142	.785	1%	17.279	23.758
1/0	3.534	.994	5/0	17.671	24.850
14	3.927	1.227	3/	18.064	25.967
3%	4.320		7/0	18.457	27.109
1%	4.712	1.485 1.767	18	10.101	21.105
5%	5.105	2.074	6	18.850	28.274
8/	5.498	2.405	1/0	19.242	29.465
7%	5.890	2.761	12	19.635	30.680
10	0.070	2.701	3%	20.228	31.919
2	6.283	3.142	12	20.420	33.183
1%	6.676	3.547	5/0	20.813	34.472
1%	7.079	3.976	3	21.206	35.785
3%	7.461	4.430	7%	21.598	37.122
12	7.854	4.909	10	21.070	
4 8 2 8 4 8	8.247	5.412	7	21.991	38.485
3/	8.639	5.940	1%	22.384	39.871
7%	9.032	6.492	14	22.777	41.282
10			3%	23.169	42.718
3	9.425	7.069	1%	23.562	44.179
1/0	9.817	7.670	5%	23.955	45.664
14	10.210	8.296	3/	24.347	47.173
3%	10.603	8.946	3/4	24.740	48.707
1/0	10.996	9.621	10		10.101
5%	11.388	10.321	8	25.133	50.265
3/	11.781	11.045	1/2	25.525	51.849
7%	12.174	11.793	14	25.918	53.456
18	12.1.1	11.195	34	26.311	55.088
4 1	12.566	12.566	12	26.704	56.745
16 /	12.959	13.364	5%	27.096	58.426
i' /	13.352	14.186	34	27.489	
2 /	13.745	15.033	1 74	27.88	

Circumferences and Areas of Circles Diameters Advancing by Eighths to 17%

Diameters by Tenths, and up to 100, see pages 124 to 129.


Diam.	Circum.	Area	Diam.	Circum.	Area
9	28.274	63.617	131/2	42.412	143.14
1/0	28.667	65.397	5/8	42.804	145.80
14	29.060	67.201	34	43.197	148.49
3/2	29.452	69.029	7/8	43.590	151.20
1%	29.845	70.882	10	10.070	101.20
5%	30.238	72.760	14	43.982	153.94
3/	30.631	74.662	1/2	44.375	156.70
8/2/8/4/8	31.023	76.589	12	44.768	159.48
78	51.025	10.309	3/	45.160	162.30
10	31.416	78.540	12	45.553	165.13
1/	31.809	80.516	52	45.946	167.99
78	32.201	82.516	38	46.338	
24			14 8 2 8 4 8		170.87
18	32.594 32.987	84.541	18	46.731	173.78
22		86.590	15	47 124	176 74
14 8/2/8/4/8	33.379	88.664	15	47.124	176.71
24	33.772	90.763	78	47.517	179.67
18	34.165	92.886	24	47.909	182.65
	24 550	07 033	14/8/22/8/4/8	48.302	185.66
11	34.558	95.033	1/2	48.695	188.69
1/2/4/8/2/8/4/8	34.950	97.205	2/8	49.087	191.75
14	35.343	99.402	34	49.480	194.83
3/8	35.736	101.62	1/8	49.873	197.93
1/2	36.128	103.87		1	
5/8	36.521	106.14	16	50.266	201.06
3/4	36.914	108.43	1/8	50.658	204.22
1/8	37.306	110.75	- 1/4	51.051	207.39
	1.6.1.2.5.4	1	3/8	51.444	210.60
12	37.699	113.10	1/2	51.836	213.82
1/8	38.092	115.47	5/8	52.229	217.08
1/4	38.485	117.86	3/4	52.622	220.35
3/8	38.877	120.28	7/8	53.014	223.65
1/2	39.270	122.72			
5%	39,663	125.19	17	53.407	226.98
8/4	40.055	127.68	1/2	53,800	230.33
2014/00/22/00/4/0	40.448	130.19	14	54.193	233.71
10	10.110		3/0	54.585	237.10
3	40.841	132.73	16	54.978	
16 /	41.233	135.30	5%	55.37	1 243.98
12 /	41.626	137.89	3/	55.76	3 247.
2 /	42.019	140.50	24	56.1	

	300	84415 88884	2.92	3.75 4.17 4.17 8.33 13.50 16.67 17.75 16.67 17.75 16.67 16.67 16.67 17.75 16.67 17.57 16.67 17.57 16.67 17.57 16.67 17.57 16.67 17.57 16.67 17.57 16.67 17.5
	200	3222319111110000	56 11.11 1.40 1.40 1.40 1.40 1.40 1.40 1.4	
	00	00 00 00 00 00 00 00 00 00 00 00 00 00	56 56 97 83	828133 828133 828 335 888133 888133
ľ	10	11098888		(14v
	8	0000000777	25 50 14 50 50 50 50 50 50 50 50 50 50 50 50 50	1.13 1.25 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5
	80	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36 56 56 78 80	1.11 1.11 1.11 1.11 5.55 5.55 5.55 5.55
	20	00 00 00 00 00 00 00 00 00 00 00 00 00	25 58 58 58 58 58 58 58	
	99	02 03 05 05 05 03 03 03 03 03 03 03 03 03 03 03 03 03	1122 4 23 11	83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84
	20	22224 22286	42 338 338	69 69 69 69 69 69 69 69 69 69 69 69 69 6
	101	002003 00200	333 33	550 556 556 556 556 556 556 556 556 556
	-	000 04 04 04 03 03 02 02 02 02 02 02 02 02 02 00 00 02 02		2225 11 22 23 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2
IVS	30	001 001 001 001 001 001 001 001 001 001		
Number of Days	20	\$0		
umber	10	00000000000000000000000000000000000000		
N	6	880000 0000000000000000000000000000000	0.05 0.05 0.05 0.05 0.05 0.05 0.05	11.13 500 500 500 500 500 500 500 500 11.13 500 500 500 500 500 500 500 500 500 50
	-	\$0.00 00.00 10.00 10.10 10.10	06400	111 256 257 110 258 257 110 258 258 258 258 258 258 258 258 258 258
	1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100
	9	88888 55555	03 03 03 03 03 03 03 03 03 03 03 03 03 0	008 008 117 550 550 550 550 550 550 550 550 550 55
		88888 85555	03 03 03 03 03 03 03 03 03 03 03 03 03 0	000 000 000 000 000 000 000 000
	+	88888 88855	00200 004	2211 220 333 557111 00 00 00 00 00 00 00 00 00 00 00 00
	3	88888888888	000000000000000000000000000000000000000	
	2	88888888888	888 8888	03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04
),	-	88888 88888		-
1	-/	8		

		GC						VII				-									_	3
1	300	10	15	22	30	40	.45	8	88	8.8	38	8	88	88	88	8,8	38	88	38	8	88	38
	30	0.8	2							C4 0	0 00	4.	4 M	2;	18	100	35	2:	100	8	120	202
	0		10	113	20	23	33	49	333	10	33		DE.	19.	32	0.0	33	19	33	.67	8	52
	200	0									101	C4 P	010	90	12:	10	33	28	33	8	18	166
	-	100	S	2080	9	122	122	33	259	2 8	31	33	2.0	88	35	3 8	35	E	35	33	8	35
	100	0		99		11	10			•				mu					19		20	
	-	100	22	98	8	-10	14	25	281	2 2	212	2	202	85	28	2 5	39	85	28	8	88	38
	8	0			4						1			-	101				15.		12	
	-	1	-	101-	00	0	12	1-0	2 001		m	1	m	198	383		338		200	-	8:	210
	2,	\$0.0	0	0.0	0	0.7		ci .	4.10	0,0	00	1.0	4.00	2.6			90		13.3		40.0	3.0
	-		17	200	10	88	11	mu n	34	0 0	274	00	31	23	353	-		331		-	85	
	70	\$0	-	22	~	20			1.0	1		•		010	3	n r	- 00		=		32	
	99	10	03	50	8	0.80	108	20	40	00.99	32	200	28	8	388	3.8	38	88	38	8	88	38
11	9	20		_		-				-			-	(10	041		-	00 0	-		8	
	20		03	0.0	8	86	88	11	GES.	47	2 80	5	2.28		DE:				8.33		8.	
	-	20	104	M M	-	0.10	01-	me	200	2 0	-10	mo	-10		AWA DI-1		1			3 16		
0	40	\$0.0	0	.03	0	0,0	00.		.27	5. ×	4	Nº 4	.67		2.67	0.0	4.67	50	0.0	3.3	00.00	0.0
N			10	20	2	**	50	0	181	2 5	212	9	2.9	85	285		202				88	
ñ	30	80.0									1.1				- Pil				t in	10.		
Number of Days	20		10	01	02	83	63	20	13	100	38	27	33	198	32	10	38	195	33		8:	
-pe	61	20		1			_		2			C.,		•		1	101	100	n m	-	9:	-
Nu	10		10	10.10	10.	10.	07	.03	36	80, 9	12	2.	117	33	19.	2 2	11	EE.	19	3.33	8	10.0
	-	100	0	-	-	-	-	-	0.00	0.0		~	-	0	001	0.0		0.	00	20		-
	0	0.08	0	0,0	0	9.0	07	0,0	88	0,0	2.4		15	(C) 4	28	2. 8	1.05	2.0	1.50	3.00		0.00
	-		28	100	E	10	100	22	18	10	88	=15	100	5	233	10	630	20	330	20	8:	25
	00	0.08		44	~	14	22	~			1	1				1				N		n vo
	-	188	8	85	10	10	50	05	58	8 5	8	8	12	23	41	200	825	56	11	33	20	10
	-	8			_		-			_	_	_			_	_	_			24		+ 10
	9		8	85	10.	10	10.	8	38	8,8	36	83	SH	22	4	20. 3	52.	8.0	8.8		80	38
	-	080	0	00	-		-	NP	0.00	+ +	00		0 00		38	NO	000		0 10	11	20	
	in	0.08	0	9.9	0	99	10.	0,0	201	9.9		99	10	-10	in.		3.03		- 99			9.00
	-		8	88	8	85	10	100	180	50	58	30	85	23	155	20	44	20	815	33	8	OF.
	4	20			_	3.3				1			• •	1.1				-			cie	
	3	1.1.1.1.1.1	80	88	8	88	80	10	02	.03	36	33	33	10	20	22	35	40	50		20	
Ц	1	8	_		-			-			1.04		- 10	The d			7.00	-	2.00	_		_
	~	\$0.00	8	88	8	88	88	10	56	0.2	10	00	38	0	12	11.	Ne.	2	DC.	.67	1.00	0.1
	-	188	8	88	8	88	88	8	10	10	10	10	50	03	55	80.4	12	13	11	33	2	2.5
	1	3	_	-			100	- 2	100	0							-		-	_	-	-

	200 300	0.04 \$ 0.06		2	.23		.35	4	14.	1 85	11	1.75	.33	- 32	20	35	44	83	29	2	25	8	83	19	33	8	8:	29
	-	50	00	_									-	-		2	10									100	10 0	
	200		0.0	_							-	-	-	~					=		38		1	1	288	-	17	300
	200	6		21	99	1	53	22	31	38	84	11	56	64	33	11	23	83	18	29	44	33	22	=	30	78	67	14
	-	-	1	*		1	1	1	1		1	-	-		cie	10	-	ŝ	-	=	10	12	27	31	38.9	E	92	20
		8	* 1	00	000		~	*	0.0	10	39	30	00	16	11	0.0	82	*	86		20		_	-	24		33	_
	100	0.0		2.0	9.4			7									-	1.9	3	0.1	- 0	1			201		200	
	-	40	-	_	_	-	_	-			-	-	-	-			-		-	-		-	-	_				_
	06	05	5	3	58	5	-	2:	÷1.	18	35	53	20	8	02	19	3	5	20	20	3.8				505	-	22	
	6	0 \$														1	-	-	10	0.1	- 00	10	12	7.	21	35	52	28
	-	33	3	3	88	9	60	==	11	2.0	E	48	62	80	26	24	45	20	=	50	77	33	80	\$	52	=	10	40
	80	00	2	2	3								-	10		-	-	÷	3	4.4	01-	0	10	1	410	E	\$	20
	-	10	33	T	35	3	8	2:	15	2	27	1	T.	20	283	20	22	36	12	8	10	17	53	86	25	22	833	12
	20	80	1	-	1	2		1		1				Ľ.,		-	-	-	-	4.		00	0	2	12	27	91	10
	0	10	20	5	0 8	8	5	80	5	17	23	33	47	60	20	20	8	17	33	20	03	8			62	33	8	10
	99	\$0	Č.					2	1						Ľ,		-	-	~	m +	* 0	-	80	0	21	33	SE	95
	-	10	25	00	58	3	8	10	88	32	19	29	39	5	20.00	002	16	16	64	626	68	83	80	68	12	4	11	2.4
	50	\$0	÷.						1				1						-	ei.	2 00	m	0	-	90	10	2	25
	-	10	20	70	20	5	3	33	38	58	16	23	3	41	5	53	2	100	36	55.	100	67	44	33	26	56	33	100
NB	40	\$0	Č.		1		i.	1	1	1				1		1			-	-	04	4	5	0		13	53	
Da	0	10	53	70	20	3	5	55	32	38	12	100	23	25	35	15	53	58	17	15	32	50	80.	10	83	67	50	33
5	30	3	Ċ,		1		1		ſ.,				1	2	2		1	0	-		10	3	*	4)	200	Ξ	11	38
1º	20	8	5	10	20	70.	02	60	0.0	53	05	12	16	19	23	31	35	39	26	1	20		.72	=	80.80	78	19.	20
Number of Davs	2	20			1				2	1					_	_	_	_				~	~	m	in in	-	=	39
Z	10	00	8	6	10	5	10	6	20	38	9	00	.08	9	11	19	.18	19	39	80.0	20	17	.36	S	26	80	83	2:
	-	8				_			_	_	_	_	_			_	_					-	-	-		10	wis	- 5
	6	8	8,	5	6	5	5	53	58	28	9	02	10	8	=:	14	16	18	33	5	88	03	.23	4	-75	-50	-25	8
	2	3	_	_	_	_	_	_	_	_	٩.	_	_					-					-	-		5	101	- 0
i	00	8	8.8	3	99	5	0	0,0	Ş	58	03	0	ð.	8	60	-	14	ĕ	5	4	182	6	8	24	5.4	1	19.	77.
	_	8	_	_		_	_					-	10	_		-	0		-	_	+ 00	-	-	-		100		01
	-	00.0	5,8	5	6	Ş.	0	0,0	5,6	20	0	9	0	8	8	17	-	÷.	2	4,	6.89	00	6	8		2	õ	
	-	3		-	0.		-	-			~		10	9	1-0	0.0	-	2	100	0.1	- 00	0	2	2	00		-	0.0
	0	00.0	5.2	5,0	5,6	2	0	0,0	0,0	0,0	0	0	0	ē	0.0	0	-	-	4	w.	58	1	80	.93	0	2.3	5	ñ
	-	0\$0	-	01	00	5	-				0	100	-	0	88	- 00	0	0	0	0.0	2 0	00	00	00 1	88	95	N	-
	10	00.0	9.9	2,0	0,0	9	0,0	9,0	20	20	9	0	0	0	0,0	29	9	7	-	di.	34	5	9	-	×, O	0.1	6.0	2.0
	-	00 80	00	0	00	-	0.	-		-	02	2	10	T	18	2.0	0	00	0	3.	30	-	Ŧ	N	28	20	-	15
	4	0.08	2,0	2,0	99	2	9	29	20	29	-	0	0	0	0,0	0	0	•	-	di	ġ m	4	wi.	91			5.0	-9.7
	-	88	2 3	21	25	2	2	29	2:		-	21	2	3	53	1 10	10	9	2	20 0	30	12	=	171	282	-	101	20
	5	\$0.0	2.	2	0,0	2	9			10	-	-	9	9			2	~	7		10		d.		1.43	1		40
	-	8	29	2	89	2	89	25	25	38	10	10	05	02	05	32	10	5	80	-	00	33	51	31	39	00	5	24
	64	\$0.0	-	25		1	-	~	-		-	~	~	~			1	-	-		1.3	1	1				2.	
	-	8	89	8	88	3	8	82	82	38	8	10	B	5	10	100	03	02	5	88	80	12	14	16	10	30	80.0	01
11	-	00	-	1				3			17	-	3	-				*	•		1					-1		1

	GOODM		MINING	HANDBO	JOK	18
300	0	4.88	1.33	5.33 6.00 6.67 226.67 33.33	40.00 53.33 60.00 66.67	33.33 00.00
500		18 94 94		22839 440	44 886 117	88.89 1 133.33 2 177.79 2
100	222222	22 28	44 667 1.11 1.33	12854 228	128383	\$58:
8	0	116	1 2 8 8 9 4	8888 8888	88888	00.08
80	666666	141	36 53 89 11 07	1 42 1 78 5 33 7 11 7 11 8 89	2852462	35.56 4 53.33 6 71.11 8
20		1212		5224	504533	31.11 3 46.67 5 46.67 5 50 7 50 50 50 50 50 50 50 50 50 50 50 50 50
00	8			1.07 1.20 1.33 1.33 4.00 5.33 5.33	8.00 9.33 10.67 12.00 13.33	26.67 40.00 53.33
20	\$0			4040	10840	
4	\$0	_		-0.04	000000	3 17.78
30	8			-1010	44000	89 13.33 33 20.00 778 26.67
	885555					44 8 89 17 7 28 18 17 7 28 18 18 18 18 18 18 18 18 18 18 18 18 18
6	885555		1. J. M. M. M.	-	20 11 11 12 12 12 12 12 12 12 12 12 12 12	4988
00	88555	2222	8858 12	118 118 118 118 118 118 118	1.07 1 1.24 1 1.42 1 1.60 1 1.78 2	5.33 6.4
-	88855 5	66668	88888	112 116 116 116 117 100 117 100 117 100 117 100 117 100 100	1.26 1.56	1222
•	888355				80 93 1.07 1.33	5.33
2	\$0					2.22
4	80				11111	3 1.78 0 2.67 3.56
~	0\$					233 2.00 778 2.60
-	20					44 67 1 80 1 7 1
	4 5 0 7 8 9 10 20 30 40 50 60 70 80 90 100 200	2 3 4 5 0 7 80 910 20 40 50 60 70 80 910 20 40 50 60 70 80 90 100 20 40 50 60 70 80 90 100 20 40 50 60 70 80 90 100 20 40 50 70 80 70 80 70 20 40 50 70 80 70 20 20 40 50 70 80 70 20 20 20 40 50 70 80 70 20 20 20 20 70 80 70 20 </td <td>2 3 4 5 0 7 80 91 20 40 30 60 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	2 3 4 5 0 7 80 91 20 40 30 60 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

136

-

Discount Equivalents

To find a net price, multiply list price by the decimal net equivalent of the given discount. EXAMPLE.—What will be the net price if a discount of 40-10-10-5 is allowed on a list price of \$65.00?

Solution.—In the column for Leading Discount 40, and in the horizontal line for Supplementary Discount 10-10-5 at the left, find the decimal net equivalent .4617. Then $65.00 \times .4617 = 30.01$, the net price.

	Leading Discount											
Supplementary Discount	10	20	30	40	50	60	80					
			Decimal	Net Eq	uivalent							
2 ¹ /2 5	.8775	.7800	.6825	. 5850	.4875	. 3900	. 1950					
5	.8550	.7 60 0	. 6650	. 5700	.4750	. 3800	:1900					
5-21/2	.8336	.7410	. 6484	. 5557	.4631	.3705	.1852					
5-5	.8123	.7220	.6318	.5415	.4513	.3610						
10	.8100	.7200	.6300	. 5400	.4500	. 3600	. 1800					
$10-2\frac{1}{2}$. 7898	.7020	.6143	. 5265	.4388	. 3510	. 1755					
10-5	.7695	. 6840	. 5985	. 5130	.4275	. 3420	.1710					
10-5-21⁄2	.7503	. 6669	.5835	. 5002	.4168	. 3334						
10-10	. 7290	. 6480	. 5670	.4860	.4050	.3240						
10-10-5	. 6925	. 6156	. 5387	.4617	. 3848	. 3078	. 1539					
10-10-5-21⁄2	.6730	. 6002	.5253	.4502	. 3751	. 3001	. 1500					
10-10-10	.6561	. 5832	. 5103	.4374	.3645	. 2916	. 1458					
10-10-10-10	. 5905	.5248	.4593	. 3937	. 3280	.2624	.1384					
10-10-10-10-5	. 5609	. 4986	.4363	. 3740	.3116	. 2492	. 1234					
15	.7550	.6800	. 5950	.5100	.4250	. 3400	.1700					
15-2 ¹ /2	.7459	.6630	. 5801	.4972	.4144	. 3310	.1655					
15-5	.7268	. 6460	. 5652	.4845	.4038	.3220	.1622					
15-10	. 6885	.6120	.5355	.4590	. 3443	. 2758	.1378					
20	.7200	. 6400	. 5600	.4800	.4000	. 3195	. 1598					
20-5	.6840	. 6080	. 5320	.4560	.3800	.3018						
20-10	. 6480	. 5760	. 5040	.4320	.3600	. 2879	. 1438					
20-10-5	.6156	. 5472	.4788	.4104	.3420	. 2728	.1364					
25	. 6750	. 6000	. 5250	.4500								
25-5	.6413	.5700		.427	5 .350	5/ .284	22 . 142 592 . 13					
25-10	.6075	. 5400			.33	200/ .	2561					
5-10-5	. 5771	. 5130	344./0	58 . 38	41/.3	2001.						

Income from Securities

Approximate Returns in Dividends on Stocks, or Running Interest on Bonds, at 4% to 10% on Par Values.

		Divide	nd or Inte	rest Rate o	on Par Valu	ue, 100 Poi	nts
Price Paid, Points	4	5	6	7	8	9	10
		Pe	ercentage I	Return on 1	Money Inv	ested	
50	8.00	10.00	12.0010.9110.009.238.57	14.00	16.00	18.00	20.00
55	7.27	9.09		12.73	14.55	16.36	18.18
60	6.67	8.33		11.67	13.33	15.00	16.67
65	6.15	7.69		10.77	12.31	13.85	15.39
70	5.71	7.14		10.00	11.43	12.86	14.29
75 80 85 90 95	$5.33 \\ 5.00 \\ 4.71 \\ 4.44 \\ 4.21$	6.67 6.25 5.88 5.56 5.26	8.00 7.50 7.06 6.67 6.32	9.33 8.75 8.24 7.78 7.37	$10.67 \\ 10.00 \\ 9.41 \\ 8.89 \\ 8.42$	12.00 11.25 10.59 10.00 9.47	13.33 12.50 11.76 11.11 10.53
100	4.00	5.00	6.00	7.00	8.00	9.00	10.00
105	3.81	4.76	5.71	6.67	7.67	8.57	9.52
110	3.64	4.55	5.45	6.36	7.27	8.18	9.09
115	3.48	4.35	5.22	6.09	6.96	7.82	8.70
120	3.33	4.17	5.00	5.83	6.67	7.50	8.33
125	3.20	4.00	4.80	5.60	6.40	7.20	8.00
130	3.08	3.85	4.62	5.38	6.15	6.92	7.69
135	2.96	3.71	4.44	5.19	5.93	6.67	7.41
140	2.86	3.57	4.29	5.00	5.71	6.43	7.14
145	2.76	3.45	4.14	4.83	5.52	6.21	6.90
150	2.67	3.33	4.00	4.67	5.33	6.00	6.67
160	2.50	3.13	3.75	4.38	5.00	5.63	6.25
170	2.35	2.94	3.53	4.12	4.71	5.29	5.88
180	2.22	2.78	3.33	3.89	4.44	5.00	5.56
190	2.11	2.63	3.16	3.68	4.21	4.73	5.26
200	2.00	2.50	3.00	3.50	$ \begin{array}{c c} 4.00 \\ 3.56 \\ 3.20 \\ 2.91 \\ 2.67 \end{array} $	4.50	5.00
225	1.78	2.22	2.67	3.11		4.00	4.44
<i>250</i>	1.60	2.00	2.40	2.80		3.60	4.00
<i>275</i>	1.45	1.82	2.18	2.55		3.21	3.64
<i>300</i>	1.33	1.67	2.00	2.33		3.00	3.33

.

. ·

Yields on Bonds

Average yearly income from bonds bought at various prices and carried to maturity.

	Number of Years to Maturity									
Price Paid,	2	4	6	8	10	14	20	30	40	50
Points	Average Yearly Percentage Return on Money Invested									
110		2.37	3.16	3.55	3.79	4.06	4.25	4.40	4.46	4.50
108		2.87	3.51	3.83	4.02	4.24	4.40	4.51	4.56	4.60
106	1.93	3.38	3.87	4.11	4.26	4.42	4.54	4.63	4.67	4.69
104	2.92	3.91	4.24	4.40	4.50	4.61	4.69	4.75	4.78	4.79
102	3.95	4.45	4.62	4.70	4.75	4.80	4.84	4.87	4.89	4.89
100	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
98	6.08	5.56		5.31	5.26	5.20	5.16	5.13	5.12	5.11
96	7.18			5.63	5.53	5.41	5.33	5.27	5.24	5.23
94	8.32		6.21	5.95	5.80	5.63	5.50	5.41	5.37	5.35
92	9.48		6.64	6.29	6.08	5.84	5.67	5.55	5.50	5.47
90	1.0	7.97	7.07	6.63	6.37	6.07	5.86	5.70	5.63	5.60
88	1	8.61	7.52	6.99	6.66	6.30	6.04	5.85	5.77	5.73
86	1	9.27	7.98	7.34	6.97	6.54	6.23	6.01	5.92	5.87
84	1	9.94	8.46	7.72	7.28	6.79	6.43	6.18	6.07	6.01
82			8.94	8.10	7.60	7.04	6.64	6,34	6.23	6,17
80	1.1		9.44	8.50	7.94	7.31	6.85	6.53	6.39	6.32
78		1000	9.96	8.90	8.28	7.58	7.07	6.71	6.56	6.49
76				9.32		7.86	7.30		6.74	6.60
1				6% 1	Bond	8				-
	1	-	N	lumber	of Ye	ars to]	Maturi	ty		
Price Paid,	1	2	3	4	5	6	7	8	9	10
Points	A	verage	Yearl	y Perc	entage	Return	on M	oney I	nvested	1
105		3.39	4.21	4.62	4.86	5.03	5.14	5.23	5.29	5.35
104	1.94				5.08	5.22	5.31	5.38	5.43	5.48
102	3.94		5.27	5.44	5.54	5.60	5.65	5.69	5.71	5.73
100	6.00		6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
			11.02	0.4.1		12.0	10.1	1.11		•
	8.12	7.09	6.75	6.58	6.48	6.41	6.36		6.30	6.2
		8.21	7.51	7.17	6.97	6.82		6.66		
	1	9.36	8.30	7.77	7.46			1/6.9		
	1		9.11	8.40	7.9	17.6			34/7	23/
1.1	1 !		9.94	9.0	3 8.5	0/8.	14/1	.8111	101	

5% Bonds

	D	United States Liberty Loan War Bonds	tates L	iberty I	oan Wa	ar Bond	8	
D. Lastic		FIRST LOAN	-	SECOND LOAN	LOAN	THIRD LOAN	FOURTH	FIFTH
Years to Run	Original 31 2% 15 to 30	Converted 4% 15 to 30	Converted 434% 15 to 30	Uriginal 4% 10 to 25	Converted 414% 10 to 25	Urigual 4 X4 % 10	Uriginal 414% 15 to 20	Original
Land of Issue	\$2,000,000,000,000 Some of which has been con- verted into 4% and 4¼ %	\$568,318,450 By conversion of 335% bonds prior to May 15, 1918.	\$376,129,100 By conversion of 315% bonds or converted 4% bonds.	\$3,808,766,150 Some of which has been con- verted into 44% bonds.	\$2,884,448,400 By conversion of 4% bonds prior to Nov 9, 1918.	\$ 4,176,516,850	\$0,989,047,000	•
Date of Issue	June 15, 1917	Nov. 15, 1917	(May 9, 1918 Oct. 24, 1918	Nov. 15, 1917	May 9, 1918	May 9, 1918	Oct. 24, 1918	
Redeemable at Govt. option		On and after June 15, 1932	On and after June 15, 1932	On and after Nov. 15, 1927	On and after Nov. 15, 1927	On and after At Maturity	On and after Oct. 15, 1933	
Maturity	June 15, 1947 June 15-Dec. 15	June 15, 1947 June 15-Dec. 15	June 15, 1947 June 15-Dec. 15		Nov. 15, 1942 May 15-Nov. 15	Nov. 15, 1942 Nov. 15, 1942 Sept. 15, 1928 Oct. 15, 1938 May 15-Nov. 15 May 15-Nov. 15 Mar. 15-Sep. 15 Arr. 15-Oct. 15	Oct. 15, 1938 Apr. 15-Oct. 15	
Conversion Conversion Privileges	Convertible Into higher rate bonds within six months after issue of such bonds.	Expired Nov. 9, 1918	None	Expired Nov. 9, 1918	None	None	None	
Tax Exemptions tions below)	Note A	Notes B and C	May 9th issue: B, C, D Oct. 24th issue: B and E	Notes B and C	Notes B, C and D	Notes B, C and D	Notes B and E	
TAX NOTE B. E. TAX NOTE B. E. TAX Lastence ta	Note B. Exempt from all target scene or inheritance target. Note B. Exempt from attend end local target and from normal income tark but subject to estate inheritance, supervar, expess and war profile Note all incomes and extinate above the normal scenario for incomes from holdians of \$5,000 bunds strate acception for estate and her by former target. Undistributed and incomes of contrained incomes from holdians of \$5,000 bunds are as every for estate and her by former target target and the incomes of contrained interested in U.S. Bands insued ther \$5,000 bunds are as a second for estate and her by former target target and the incomes of contrained interested in U.S. Bands insued ther \$5,000 bunds are and \$5,000 bunds are and \$5,000 bunds are as a second for estate and the profinitioned tark incomes of contrained interested in the form holdians of \$5,000 bunds are as a second for estate and by finglowed by the income tark are on askinours remaining and are then \$5,000 bunds are as a second for \$5,000 bunds are as a second for \$5,000 bunds are and \$5,000 bunds are as a second for \$5,000 bunds are as a second are as a second for \$5,000 bunds are as a second for \$5,000 bu	taxes except esta te and local taxt ings above the n buted net incom	te or inheritance sand from norr ormal exemption es of corporation moome remaining	taxes. nal income tax, t (incomes from h is invested in U.	ut subject to est oldings of \$5,000 8. Bonds issued as root bonds of a	ate, inheritance,) bonds are tax e after Sept. 1, 15 bend of the tax	ruper-tax, expess xempt except for 117, are not fubj tble year.	and war profits a setate and in- set to the 10%
TAX isons not a	Note to encoding 154 times the amount of Fourth Lean Bond hald by the owner is exempt until two years after the war from surface full success and war profile taxes, provided and Fourth Lean Bonds were originally subscribed for and have been continuously owned by the screwer up to the date of the tax return. In Bonds owned continuously for at least six months prior to one's death are acceptable at par in payment of any estate or inheritance the D. Bonds owned continuously for at least six months prior to one's death are acceptable at par in payment of any estate or inheritance	es the amount o s. provided said his tax return.	f Fourth Loan Bo Fourth Loan Bo least six months	onds held by the nds were original s prior to one's d	e owner is exem ly subscribed fo eath are accepta	pt until two yes or and have be ble at par in pay:	are after the way an continuously ment of any estat	from surfaces owned by the e or inheritance
TAK WARE IMPO	ydos imposed by the United Fastes under any present or future law War E. In addition to above tax szemption interest on not to scosed \$30,000 bonds of this faste is exempt until two years after the war word entrares, scoses and war profis taxes when owned by one individual, partnership, corporation or association.	d States under a ove tax exemptio rar profits taxes	ny present or mu interest on no when owned by	tre law. to exceed \$30.0 one individual. p	00 bonds of thi artnership, corpo	s issue is exempt ration or associat	t until two years sion.	ster the war

140

f

Yield on Liberty Bonds

Bought at Par and Sold at Higher or Lower

Prices, after Holding for One or More Years

Selling at less than par a bond bought at par causes a loss of income rate in any case, and may involve a loss on the principal, as shown by minus signs in the table below.

Only by holding the bond to maturity, or until called for redemption by the government, or by otherwise disposing of it at par and interest can the full rate of income be realized.

Liberty bonds should be held for sale or redemption at par or higher. Prices lower than par are due solely to willingness to sell at a sacrifice, and are not at all due to any lack of value in the bonds themselves.

The table applies only to the $4\frac{1}{4}\%$ issues. Proportionate figures for issues of other rates.

Selling	Number of Years Held									
Price of a \$50.00	1	2	3	5	7	10	15	20		
Bond			Yearl	y Percei	ntage Re	turn				
\$55.00 54.00 53.00 52.00	14.25 12.25 10.25 8.25	8.25 7.25 6.25	6.92 6.25 5.58	5.85 5.45 5.05	5.39 5.11 4.82	5.05 4.85 4.65	4.72 4.65 4.52	4.65 4.55 4.45		
51.00 50.00 (par)	6.25 4.25									
49.00 48.00 47.00 46.00 45.00	2.25 .25 -1.75 -3.75 -4.75	2.25 1.25	2.92 2.25 1.58	3.45 3.05	3.68 3.39 3.11	3.85 3.65 3.45	3.99 3.85	4.05 3.95		
44.00 43.00 42.00 41.00 40.00	- 8.75 -10.75	- 1.75 - 2.75 - 3.75 - 4.75 - 5.75	42 -1.08 -1.75	1.45 1.05 .65	2.25 1.96 5 1.6	2.85	3.32	3.55		

Average Yearly Percentage Returns, 41/2% Bonds

Postal Rates and Classifications

Domestic Mail Matter

Domestic mail includes matter deposited in the mails for local delivery or transmission from one place to another within the United States, or to or from the possessions of the United States.

Domestic rates apply generally to mail sent from the United States to Canada, Cuba, Mexico, the Republic of Panama and the United States postal agency at Shanghai, China, and matter addressed to officers or members of the crew of vessels of war of the United States.

POSTAL CARDS-2 cents each to all parts of the United States, and Canada. (Pre-War rate, 1 cent.)

LOCAL, OR "DROP" LETTERS—2 cents for each ounce or fraction thereof.

FIRST CLASS—Letters and all other written matter, whether sealed or unsealed, and all other matter, sealed or fastened in any manner so that it cannot be easily examined—3 cents for each ounce or fraction thereof. (Pre-War rate, 2 cents for each ounce or fraction thereof.)

FORM LETTERS, if mailed in quantities of twenty or more at one time at a post office, can be filled in, signed and mailed, unsealed, under thirdclass postage rates.

SECOND CLASS—Only for publishers and news agents—special zone rate. Newspapers and periodicals (regular second-class publications) can be mailed by the public at the rate of 1 cent for each 4 ounces or fraction thereof.

THIRD CLASS—Printed matter, in unsealed wrappers only (all matter enclosed in notches envelopes must pay letter rates)—1 cent for each 2 ounces or fraction thereof, which must be fully prepaid. This includes circulars, chromos, engravings, handbills, lithographs, music, pamphlets, proof-sheets and manuscript accompanying the same, reproductions by the electric pen, hectograph, metallograph, papyrograph, and in short any reproductions upon paper, by any process except handwriting, the copying press typewriter and the neostyle process. Limit of weight, 4 pounds.

FOURTH CLASS-See"Parcel Post rates, following pages.

Foreign Mail Matter

Canada, Cuba, Mexico and Panama—generally same classification and rates as in the United States.

Postal Union Rates

LETTERS-5 cents for 1 ounce or fraction; 3 cents for each additional ounce or fraction.

PRINTED MATTER, periodicals, circulars, books, etc.—1 cent for each 2 ounces or fraction thereof.

COMMERCIAL PAPERS, etc.—5 cents for first 10 ounces or fraction thereof; 1 cent for each additional 2 ounces or fraction thereof.

MERCHANDISE SAMPLES-2 cents for first 4 ounces or fraction hereof; 1 cent for each additional 2 ounces or fraction thereof.

POSTAL CARDS-2 cents for a single card; 4 cents for double return

Domestic Parcel Post Rates In Effect March 15, 1918

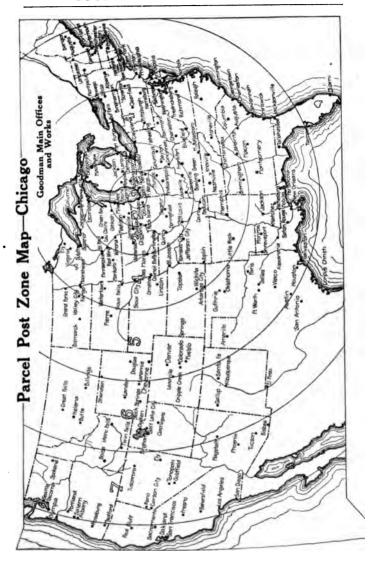
See Maps on following pages

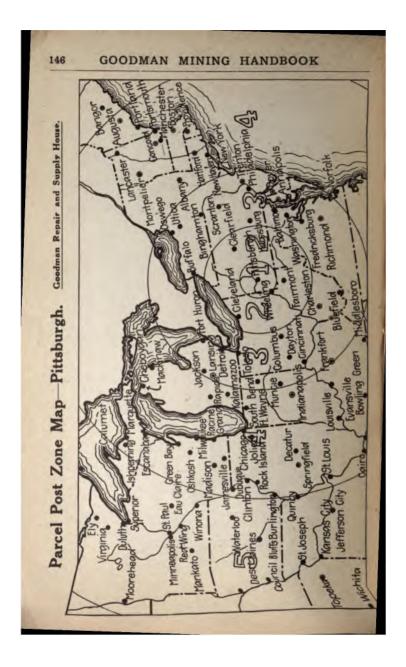
			See N	laps on	lonowin				
	Firs	t Zone	2nd	3rd	4th	5th	6th	7th	8th
a t			Zone	Zone	Zone	Zone	Zone	Zone	Zone
Weight Pounds		Zone	50	150	300	600	1,000	1,400	all
e.	Local	Rate 50	to 150	to 300	to 600	to 1,000	to 1,400	to 1.800	over 1.800
₽ď	Rate	miles	miles	miles	miles	miles	miles	miles	miles
		mico	Rate	Rate	Rate	Rate	Rate	Rate	Rate
1	\$0.05	\$0.05	\$0.05	\$0.06	\$0.07	\$0.08	\$0.09	\$0.11	\$0.12
2	.06	.06	.06	.08	. 11	.14	.17	.21	.24
3	.06	.07	.07	.10	.15	.20	.25	.31	.36
2 3 4 5	.07	.08	.08	.12	.19	.26	.33	.41	.48
	.07	.09	.09	.14	.23	.32	.41	.51	.60
6	.08	.10	.10	.16	.27	.38	.49	.61	.72
8	.08 .09	.11	.11 .12	.18 .20	.31 .35	.44	.57	.71 .81	.84 .96
ğ	.09	.13	.13	.20	.39	.56	.73	.91	1.08
10	.10	.14	.14	.24	.43	.62	.81	1.01	1.20
11	.10	.15	.15	.26	.47	.68	.89	1.11	1.32
12	.11	.16	.16	.28	.51	.74	.97	1.21	1.44
13	.11	.17	.17	.30	.55	.80	1.05	1.31	1.56
14	.12	.18	.18	.32	.59	.86	1.13	1.41	1.68
15	.12	.19	.19	.34	.63	.92	1.21	1.51	1.80
16 17	.13	.20	.20	.36	.67	.98	1.29	1.61	1.92
18	.13 .14	.21	.21	.38	.71 .75	1.04	1.37	1.71	2.04
19	.14	.23	.23	.40	.79	1.16	1.53	1.91	2.28
20	.15	.24	.24	.44	.83	1.22	1.61	2.01	2.40
21	.15	.25	.25	.46	.87	1.28	1.69	2.11	2.52
22	.16	.26	.26	.48	.91	1.34	1.77	2.21	2.64
23	.16	.27	.27	.50	.95	1.40	1.85	2.31	2.76
24 25	.17	.28	.28	.52	.99	1.46	1.93	2.41	2.88
	.17	.29	.29	.54	1.03	1.52	2.01	2.51	3.00
26 27	.18	.30	.30	.56	1.07	1.58	2.09 2.17	2.61 2.71	3.12 3.24
28	.18	.31 .32	.31	.58 .60	1.11	1.64	2.17	2.81	3.36
·29	.19	.33	.33	.62	1.19	1.76	2.33	2.91	3.48
30	.20	.34	.34	.64	1.23	1.82	2.41	3.01	3.60
31	.20	.35	.35	.66	1.27	1.88	2.49	3.11	3.72
32	.21	.36	.36	.68	1.31	1.94	2.57	3.21	3.84
33	.21	.37	.37	.70	1.35	2.00	2.65	3.31	3.96
34 35	.22	.38	.38 .39	.72 .74	1.39	2.06	2.73	3.41	4.08
36	.23	.39	.39	.76		2.12	2.81	3.61	4.32
37	.23	.40	.40	.78	1.47	2.18	2.89	3.71	4.32
38	.24	42	.42	.80	1.55	2.30	3.05	3.81	4.56
39	.24	.43	.43	.82	1.59	2.36	3.13	3.91	4.68
<u>40</u>	25	.44	.44	.84	1.63	2.42	3.21	4.01	4.80
41	.25	.45	.45	.86	1.67	2.48	3.29	4 11	4.92
42	.26	.46	.46	.88	1.71	2.54	3.37	4.21	5.04
43 44	.26 .27	.47 .48	.47 .48	.90 .92	1.75	2.60	3.45	4.31	5.16
45	.27	.48	.48 .49	.92	1.83	2.66	3.53 3.61	4.41	5.4
46	.28	.50	.50	~					2 1 0
47	.28	.50	.50	.96 .98	1.87		1 3'	17 \ 4	71 \ 5
48	. 29	.52	.51	1.00	1.9	5 \ 2.9	0 3	85 \ 4	18.
19 0	.29	.53	. 53	1.02	1 1.9	9 \ 2.	96 \ 3	.93	4.91 5.01
<u>v</u> /	. 30	.54	54	1.04	2.0)3 \ 3	.02 \	4.01 \	

Domestic Parcel Post Rates-Continued

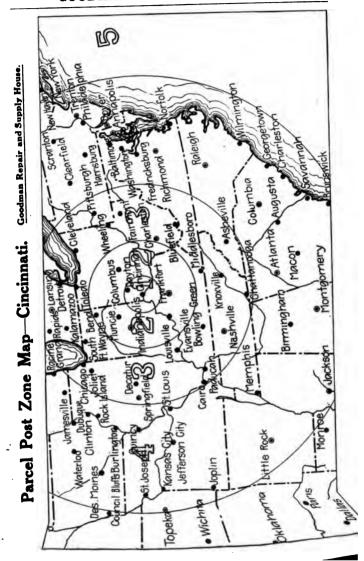
See Maps on following pages

	First	Zone	2nd Zone	3rd Zone	
Weight Pounds			20ne	150	
60 Å		Zone	to	to	Parcels May Be Insured
e e	Local	Rate	150	300	
►¢	Rate	50	miles	miles	Against Damage or Loss
		miles	Rate	Rate	and
51	\$0.30	\$0.55	\$0.55	\$1.06	
52	. 31	. 56	. 56	1.08	May Also Be Sent C. O. D.
53	.31	. 57	.57	1.10	To Money Order Post Offices only
54	.32	.58	. 58	1.12	To money order Post Onices dilly
55	.32	. 59	. 59	1.14	Insurance Rates
56	.33	.60	. 60	1.16	
57	.33	.61	.61	1.18	Value, not over \$5.00fee 3c
58	.34	.62	.62	1.20	Value, not over \$25.00fee 5c
59	.34	.63	.63	1.22	Value, not over \$50.00fee 10c
60	.35	.64	64	1.24	Value, not over \$100.00fee 25c
61	.35	.65	.65	1.26	
62	.36	.66	.66	1.28	C. O. D. Rates
63	.36	.67	.67	1.30	
64	.37	.68	.68	1.32	(Which include insurance)
65	.37	.69	.69	1.34	Amount due Sender
66	.38	.70	.70	1.36	Not over \$50.00fee 10c
67	.38	.71	.71	1.38	Not over \$100.00fee 25c
68	.39	.72	.72	1.40	
69	.39	.73	.73	1.42	
70	.40	.74	.74	1.44	


Parcels weighing 4 ounces or less, except books, seeds, plants, etc., 1 cent for each ounce or fraction thereof, any distance.


Parcels weighing 8 ounces or less, containing books, seeds, cuttings, bulbs, roots, scions and plants, 1 cent for each 2 ounces or fraction thereof, regardless of distance.

Parcels weighing more than 8 ounces, containing books, seeds, plants, etc., parcels of miscellaneous printed matter weighing more than 4 pounds and all other parcels of fourth-class matter weighing more than 4 ounces are chargeable, according to distance or zone, at the pound rates shown in the above table, a fraction of a pound being considered a full pound.


THE LIMIT OF WEIGHT of fourth-class matter is 70 pounds for parcels mailed for delivery within the first, second and third zones, and 50 pounds for all other zones.

LIMIT OF SIZE. Parcel post matter may not exceed 84 inches in length and girth combined. In measuring a parcel the greatest distance in a straight line between the ends (but not around the parcel), is taken as its length, while the distance around the parcel at its thickest part is taken as its girth. For example, a parcel 35 inches long, 10 inches wide and 5 inches high measures 65 inches in length and girth combined.

Population of the United States

Estimated 1918

Total-States, Territories and Possessions, 113,235,727

States, Territories and District of Columbia

T	`otal, 102	.821.000	
Alabama	332.608	Montana	459,494
Alaska	65,973		.271.375
	255.544	Nevada	106.734
Arkansas1.	739.723	New Hampshire	442.506
California2,	938,654	New Jersey 2	2,948,017
Colorado	962,060	New Mexico	410,283
Connecticut1,	244,479	New York	
Delaware	213,380		2.403.738
	363,980	North Dakota	739,201
Florida	893,493		5.150.356
Georgia	856,065	Oklahoma 2	2.202.081
Idaho	428,586	Oregon	835.741
Illinois6.	152,257		3.522.017
Indiana	816,817	Rhode Island	613.315
Iowa	358,066	South Carolina 1	.625.475
Kansas1,	829,545	South Dakota	698,509
Kentucky2,	379,639		2.288.004
Louisiana 1,	829 130	Texas	429.566
Maine	772,489	Utah	434,083
Maryland1,	362,807	Vermont	363.669
Massachusetts	719,156		2,192,019
Michigan	054,854	Washington 1	.534.221
Minnesota			.386.038
Mississippi1,			2.500.350
Missouri	410,692	Wyoming	179,559
-			

Possessions

Total, 10	0,414,727	
Hawaii	Canal Zone	77,891

Important Cities In Order of Population

	01401 01	r opulation	
1. New York, N. Y5	.896.044	Indianapolis, Ind	277.479
2. Chicago, Ill		Denver, Colo	268.439
3. Philadelphia, Pa1		Rochester, N. Y.	264,714
4. Detroit, Mich	850,000	Providence, R. I.	259,895
5. St. Louis, Mo	786.630	St. Paul, Minn	252.465
6. Boston, Mass	772.997	Louisville, Ky	240,808
7. Cleveland, Ohio	690.837	Columbus, Ohio	220,035
8. Baltimore, Md		Columbus, Onto	
	625,000	Oakland, Cal	206,405
	586,196	Toledo, Ohio	202,010
10. Los Angeles, Cal	533,535	Atlanta, Ga	196,144
		Birmingham, Ala	189,716
Buffalo, N. Y	475,781	Worcester, Mass	170,280
San Francisco, Cal	471,023	Omaha, Neb	167,741
Milwaukee, Wis	445,008	Richmond, Va.	158,702
Newark, N. J	418,789	Syracuse, N. Y.	158,514
Cincinnati, Ohio	414.248	New Haven, Conn	158,000
New Orleans, La	377.010	Spokane, Wash	157,656
Minneapolis, Minn	373,448	Memphis, Tenn	151.877
Washington, D. C	369.282	Scranton, Pa	149.541
Seattle, Wash	366,445	Paterson, N. J.	140 512
Jersey City, N. J.	312.557	Bridgeport, Conn	1 000 041
Portland Ora		Grand Rapids, Mich	132 861
Portland, Ore.	308,399		129.82
Kansas City, Mo	305,816	1 T. CHI TCLACH MICHORITICI	

Population of the United States

Important Cities—Continued

import	ant citi	es continueu	
Dallas, Texas	129,632	Charleston, S. C	61,041
	128,939	Pawtucket, R. I.	60,666
Dayton, Ohio		Pawtucket, K. I	
San Antonio, Texas	128,215	Berkeley, Cal	60,427
Hartford, Conn	122,000	New Britain, Conn	60,000
New Bedford, Mass	121,622	Altoona, Pa	59.712
Salt Lake City, Utah	121,233	Atlantic City, N. J	59,515
		Mahila Ala	
Nashville, Tenn	118,136	Mobile, Ala	59,201
Tacoma, Wash Houston, Tex	117,446	Knoxville, Tenn	59,112
Houston, Tex.	116.878	Little Rock, Ark	58,716
Wilmington, Del.	115,000	Sioux City, Iowa	58.568
Lowell, Mass	114,366	Covington, Ky	57,768
			57,700
Cambridge, Mass	114,293	Flint, Mich	57, 386
Trenton, N. J.	113,974	Rockford, Ill.	56,73 9
Youngstown, Ohio	112,282	Saginaw, Mich	56, 469
Reading Pa	111.607	San Diego, Cal	56,412
Reading, Pa Albany, N. Y.	111.077	Bushla Cala	56,084
Albany, N. I		Pueblo, Colo Binghamton, N. Y	30,004
Fort Worth, Tex	109,597	Binghamton, N. Y	55,791
Fort Worth, Tex Springfield, Mass	109,298	York, Pa. Springfield, Ohio	52,770
Camden, N. J	108.117	Springfield, Ohio	52,296
Lynn, Mass	104,534	Malden, Mass	52,243
Den Mainen L			51 070
Des Moines, Iowa	104,052	Haverhill, Mass	51,870
Schenectady, N. Y Yonkers, N. Y	103,774	Lancaster, Pa	51,437
Yonkers, N. Y.	103,066	Augusta, Ga	50,642
Lawrence, Mass	102,923	Kalamazoo, Mich	50,408
Kongog City Von	102 020	Davenport, Iowa	49,618
Kansas City Kan Oklahoma City, Okla	102,020 97,588	Davenport, Iowa	49,010
Oklahoma City, Okla	97,588	Topeka, Kan	49,538
Duluth, Minn	97,077	Salem, Mass	49,538
Waterbury, Conn	97,000	Chelsea, Mass	48,405
Akron, Ohio	93,604	Bay City, Mich	48,390
			49,000
Somerville, Mass	91,218	McKeesport, Pa	48,299
Norfolk, Va. Utica, N. Y. Elizabeth, N. J.	91,148	Racine, Wis	47,465
Utica, N. Y.	89,272	Superior, Wis Lincoln, Neb	47,167
Elizabeth N I	88,830	Lincoln Neb	46,902
St Joseph Mo	86,498	Boanoke Vo	46.282
St. Joseph, Mo Manchester, N. H		Roanoke, Va Macon, Ga	
Manchester, N. H	79,607	Macon, Ga	46,099
Jacksonville, Fla	79,065	Woonsocket, R. I	45,365
Wilkes-Barre, Pa	78,334	Newton, Mass	44.614
Hoboken, N. J Troy, N. Y Fort Wayne, Ind	78,324	West Hoboken, N. J	44,386
Tran N V	78,094	Owiners Mars	44,318
1109, N. 1		Quincy, Mass Butte, Mont	
Fort Wayne, Ind	78,014	Butte, Mont	44,057
East St. Louis, Ill	77,312	Montgomery, Ala	44,039
Evansville, Ind	76,981	East Orange, N. I.	43,761
Rrie Pa	76,592	Wheeling W Vo	43,657
Erie, Pa. Passaic, N. J		East Orange, N. J Wheeling, W. Va Pittsfield, Mass	
TRIALIA TO	74,478	Calmater (Da	43,004
Wichita, Kan	73,597	Gaiveston, Tex	42,650
Harrisburg, Pa	73,276	Galveston, Tex Fitchburg, Mass	42,419
Bavonne, N. I.	72,204	Lexington, Ky	41.997
Peoria, Ill	72,184	Newcastle, Pa	41.915
Couth Dand Ind		Chaster De	41,857
South Bend, Ind	70,967	Chester, Pa	41,037
Ionnstown, Pa	70,473	Hamilton, Ohio	41,338
Savannah, Ga Brockton, Mass	69,250	Hamilton, Ohio Elmira, N. Y	41.278
Brockton Mass	69,152	Springfield Mo	41,169
FI Dago Tor	69,149	Springfield, Mo Charlotte, N. C	40,759
El Paso, Tex		Destautotte, N. C	10,109
Sacramento, Cal	68,984	Portamouth, Va	40,693
Terre Haute, Ind	67,361	Everett, Mass	40,160
Holvoke, Mass	66,503	Dubuqua Ioma	10 006
Allentown, Pa	65,109	Toliet III	38,549
Dostland Mo		Codes Banida Jowa	38,033
Portland, Me	64,720	Conar Labina Toma	31,823
Springfield, Ill	62,623	Auburn, N. Y	37,023
Centon Ohio	62,566	Taunton, Mass	37,023 36,837
Tampa, Fla	62,389	Oniney, Ill.	36,54
Tampa, Fla Chattanooga, Tenn		Joliet, Ill. Cedar Rapids, Iowa Auburn, N. Y. Taunton, Mass Quincy, Ill. Oshkosh, Wis	
	61,575	Cankoan, it with the	
			_

The World War

Chronology of Principal Events

1914

Inne 28-Archduke Ferdinand and wife assassinated in Sarajevo.

Bosnia. July 28—Austria-Hungary de-clares war on Serbia.

1-Germany declares war A 110 on Russia.

on Russia. Aug. 4—France declares war on Germany; Germany declares war on Belgium; Great Britain sends Bel-gium neutrality ultimatum to Germany; British army mobilized and state of war between Great Britain and Germany is declared. Presi-dent Wilson issues neutrality proclamation.

Aug. 5—Germans begins fighting on Belgian frontier.

Aug. 6-Austria declares war on Russia.

Aug. 10-France declares war on

Aug. 10-France declares war on Aug. 12-Great Britain declares war on Austria-Hungary; Monte-negro declares war on Germany.

Aug. 23-Japan declares war on

Aug. 23-Japan and Austria Germany. Aug. 25-Japan and Austria break off diplomatic relations. Sept. 2-Government of France transferred to Bordeaux. Sept. 4-Germans cross the

Sept. 5-England, France, and Russia sign pact to make no separate peace.

Sept. 6-French win battle of Marne.

Sept. 14-Battle of Aisne starts; German retreat halted.

Oct. 29-Turkey begins war on Russia.

7-Tsingtao falls before Nov. Japanese troops.

1915

Jan. 24—British win naval battle in North sea. Feb. 12—Germans drive Russians

Feb. 12—Germans grive Russians from positions in East Prussia, tak-ing 26,000 prisoners. Feb. 18—German blockade of

English and French coasts put into effect.

Feb. 21-American steamer Eve-

lyn sunk by mine in North sea. Feb. 22—American steamer Carib ank by mine in North sea.

Feb. 28-Dardanelles entr forts capitulate to English entrance and French.

March 22-Fort of Przemysl surrenders to Russians. March 23—Allies land troops on

May 7-Liner Lusitania torpe-doed and sunk by German submar-ine off the coast of Ireland with the loss of more than 1,000 lives, 102 Americans.

May 23-Italy declares war on Austria.

3-Germans June recapture Przemysl with Austrian help.

Aug. 31-Italy declares war on Turkey.

Sept. 1—Ambassador Bernstorff announces Germans will sink no more liners without warning.

Sept. 4—German submarine tor-pedoes liner Hesperian.

5—Russia Oct. and Bulgaria sever diplomatic relations; Russian, French, British, Italian and Serbian diplomatic representatives ask for passports in Sofia. Oct. 10—Gen. Mackensen's forces

take Belgrade.

Oct. 12-Edith Cavell executed by Germans.

Oct. 13-Bulgaria declares war on Serbia.

on Serona. Oct. 15-Great Britain declares war on Bulgaria. Oct 16-France declares war on

Bulgaria. Oct. 19-Russia

and Italy declare war on Bulgaria. Dec. 4—Ford "peace party" sails

for Europe. Dec. 8-9-Allies defeated in

Macedonia.

Dec. 15—Sir John Douglas Haig cceeds Sir John French as chief succeeds Sir John French as cl of English armies on west front.

1916

Jan. 9-British evacuate Gallipoli peninsula.

Feb. 22—Crown prince's army begins attack on Verdun. March 8—Germany declares war

on Portugal. March 15-

March 15—Austria-Hungary de-clares war on Portugal. March 24—Steamer Sussex tor-

pedoed and sunk.

The World War-Continued

April 29-British troops at Kut-

Advantage of the second warfare. ine

May 13—Austrians begin great offensive against Italians in Trentino.

May 31-Great naval battle off Danish coast.

cruiser Hampshire. July 9-German merchant sub-marine Deutschland Baltimore.

Aug. 27-Italy declares war on Germany; R side of allies Roumania enters war on

Aug. 29-Field Marshal von Hindenburg made chief of German armies, succeed staff of succeeding Gen. von Falkenhayn. Nov. 6-Submarine sinks British

passenger steamer Arabia.

Nov. 7-Submarine sinks American steamer Columbian. Nov. 8-Russian army invades

Transylvania, Hungary. Nov. 9—Austro-German armies defeat Russians in Volhynia, and take 4,000 prisoners. Nov. 21-British hospital ship

Britannic sunk by mine in Ægean sea

Nov. 28--Roumanian govern nov. 26—Robinanian govern-ment abandons Bucharest and moves capital to Jassy. Dec.8—Gen von Mackensen cap-tures big Roumanian army in Pro-

hova valley. Dec. 19—Lloyd George declines

Dec. 19-Dioya declines German peace proposals. Dec. 26-Germany proposes to President Wilson "an immediate meeting of delegates of the belligerents.

1917

Jan. 31-Germany announces unrestricted submarine warfare. Feb. 3—President Wilson reviews

submarine controversy before con-gress; United States severs diplo-matic relations with Germany; American steamer Housatonic sunk

Without warning. Feb. 12—United States refuses German request to discuss matters of difference unless Germany withdraws unrestricted submarine war-

fare order. Feb. 14—Von Bernstorff sails for Germany.

Feb. 25-British under Gen. Maude capture Kut-el-Amara; sub-marine sinks liner Laconia without warning; many lost, including two Americans.

Feb. 26-President Wilson asks congress for authority to arm American merchantships.

Feb. 28—Secretary Lansing makes public Zimmerman note to Mexico, proposing Mexican-Japanese-German alliance.

March 15-Czar Nicholas Russia abdicates.

March 21-American oil steamer Healdton torpedoed without warning

March 22—United States recognizes new government of Russia.

April 2-President Wilson asks congress to declare that acts of Germany constitute a state of war; submarine sinks American steamer Aztec without warning.

April 4—United States senate passes resolution declaring a state

of war exists with Germany. April 6—House passes war reso-lution, and President Wilson signs joint resolution of congress.

April 8-Austria declares sever-ance of diplomatic relations with

ance of diplomatic relations with United States. April 20—Turkey severs diplo-matic relations with the United States

April 28-Congress passes selective service act for raising of army of 500,000; Guatemala severs diplomatic relations with Germany.

May 14-Espionage act becomes law by passing senate. May 18—President Wilson signs

selective service act.

June 5—Nearly 10,000,000 men in U.S. register for military service. June 12—King Constantine of

Greece abdicates. June 13-Gen. Pershing and staff

arrive in Paris.

June 15-First Liberty loan closes

June 26—First contingent Amer-ican troops under Gen. Sibert ican troops une arrives in France. Sibert

June 29—Greece severs diplo-matic relations with Teutonic allies. July 9—President Wilson places food and fuel under federal control-July 14—Aircraft appropriation bill of \$640,000,000 passes house

Chancelor von Bethmann-Hollwer

The World War-Continued

resignation forced by German political crisis.

July 18—United States govern-ment orders censorship of telegrams cablegrams crossing frontiers. and July 22-Siam declares war on Germany.

July 28—United States war indus-ies board created to supervise tries

tries used expenditures. Sept. 16-Russia proclaims new republic by order of Premier

Oct. 27—Formal announcement made that American troops in France had fired their first shots in made

the war. Oct. 29—Italian Isonzo front collapses and Austro-German army reaches outposts of Udine.

Nov. 1—Secretary Lansing makes public the Luxburg "spurlos ver-senkt" note. Nov. 9—Permanent interallied military commission created. Nov. 24—Navy department an-nounces capture of first German submarine by American destroyer. Nov. 28—Boldbarylic get absolute

Nov. 28-Bolsheviki get absolute control of Russian assembly in Russian elections.

Jacob Jones, first regular warship of American navy destroyed. Dec. 7—Congress declares war

on Austria-Hungary. Dec. 8—Jerusalem surrenders to Gen. Allenby's forces. Dec. 26—President Wilson issues

proclamation taking over railroads.

1918

Jan. 28-Russia and Roumania sever diplomatic relations. Feb. 2—United States troops take

over their first sector, near Toul. Feb. 6-United States troopship

Tuscania sunk by submarine, 126 lost. March 1—Americans repulse Ger-man attack on Toul sector.

March 2—Treaty of peace with Germany signed by Bolsheviki at

Brest-Litovsk. March 4—Germany and Roumania sign armistice on German terms. March 23—"Mystery gun" shells

Paris.

April 26—British and French navies "bottle up" Zeebrugge. May 10—British navy bottles up Ostend.

May 24-British ship Moldavia. deed; 56 lost. June 3—Five German submarines attack U. S. coast and sink eleven

ships.

June 5—U. S. marines fight on e Marne near Chateau Thierry. June 22—Italians defeat Austhe

July 18—Gen. Foch launches allied offensive, with French, Amer-ican, British, Italian and Belgian troops.

July 21-Americans and French capture Chateau Thierry. July 30—German crown

prince flees from the Marne and withdraws armv.

Aug. 4—Americans take Fismes. Aug. 5—American troops landed Archangel. at

Aug. 7-Americans Cross the Vesle.

Sept. 29-Allies cross Hinden-

Sept. 30—Bulgaria surrenders, after successful allied campaign in Balkans.

Oct. 5—Germans start abandon-ment of Lille and burn Douai. Oct. 11—American transport

Oct. 11—American transport Otranto torpedoed and sunk: 500 lost. Oct. 13—Foch's troops take Laon

and La Fere. Oct. 17—Allies capture Bruges, Zeebrugge, Ostend, Lille. and Douai.

Oct. 27—German government ks President Wilson to state asks terms.

29—Austria Oct. opens direct negotiations with Secretary Lansing. Oct. 31—Turkey surrenders

surrenders; Austrians utterly routed by Italians lose 50,000; Austrian envoys, under white flag, enter Italian lines. Nov. 1—Allied conference at

Versailles fixes peace terms for Germany.

Nov. 3—Austria signs armistice amounting virtually to unconditional surrender.

Nov. 4-Allied terms are sent to Germany.

Nov. 7—Germany's envoys enter allied lines by arrangement. Nov. 9—Kaiser Wilhelm abdi-

cates and crown prince renounces throne.

11-Armistice signed and Nov. hostilities cease.

GOODMAN MINE EQUIPMENT

FOR

CUTTING LOADING GATHERING HAULING

154

Goodman Electric Breast Machine

Standard Type

Fitted with Chain Guards

The Mining Machine with Compound Wound Motor, enabling it to adapt itself to variations in the cutting and voltage.

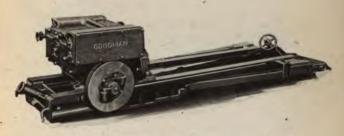
Its motor is placed lengthwise, giving ample room for good bearings and wide-face pinion.

All gears are large, assuring ample strength and durability.

Has only one worm gear, and that a large one.

All parts are designed with generous proportions, for needed strength and durability.

Has under-running chain, which permits cutting close to the bottom.


Fitted with chain guard, when so required, for protection of men and meeting all legal requirements.

Unequaled for really heavy duty service, as. proved by years of test under all mining conditions.

155

Goodman Electric Breast Machine

Standard Type

Enclosed Electrical Parts-Chain Guards

Slight alterations from plain design of the Standard Type machine permit enclosure of electrical parts for use in gaseous mines.

Easily removed hand-hole covers afford free access to commutator and brush holders.

The machine with electrical parts enclosed is in every other respect the Standard machine.

May have chain guards, as here shown, or be without them, as required.

Back jack is self-supporting—does not fall to the floor when released.

Rollers carry the heavy end, making shifting easy, on skid or bottom.

Goodman Electric Breast Machine

Low Vein Type

With Chain Guards

Has the Compound Wound Motor, so important in mining machine design.

Motor armature lies lengthwise, allowing room for generous bearings and gears.

Built very low, permitting operation in very thin coal.

Gearing is all readily accessible, making maintenance easy.

Sliding Frame is very stiff, insuring straight and free cutting.

Stationary Frame is of the same rugged construction as for the Standard machine, giving the necessary rigidity without excessive weight.

Chain Guards may be supplied as shown, or omitted.

May be made with electrical parts enclosed.

Goodman Electric Breast Machine

Standard Type

For Alternating Current

Has simple and powerful induction motor, the rotor of which cannot be burned out.

The power truck on which it moves is equipped with a planetary drive, which enables the stopping of the truck while the motor is still running, and gradually starting again without any shock or strain to any of the propelling parts.

Equipped with a three-conductor cable for threephase circuits.

The machine, excepting the motor parts, is the same as the direct current machine shown on preceding pages.

May be fitted with chain guards when so desired.

Highly economical for the small mine which purchases power, available only in alternating curre

Goodman Air Breast Machine

Standard Type

Compressed Air Engine

The Goodman air driven breast machine runs as quietly and as free from vibration as an electric machine.

This is accomplished by the perfect balance of the engine.

Because of its smooth running and absence of vibration, the jacks are as easily held as on an electric machine.

Because of its smooth running and absence of vibration, the engine does not shake itself to pieces as do air driven breast machines of the old type.

Because of its smooth running and absence of vibration, the maintenance of this engine is easier and cheaper than for any engine of the old type.

Because of its modern design, this air driven breast machine will cut coal with smaller consumption of air than any other similar machine.

The engine is so constructed that it will give greater torque for a given initial pressure than will any other similar machine.

And therefore this machine will run on low air ressures, where others will stall.

Loading Breast Machine on Drop-Front Truck

Has a parted platform, the front half hinged on the forward axle.

In unloading, this drop front forms an incline down which the machine slides freely to the floor.

In loading, the incline makes the work easy and rapid.

All four truck wheels remain always on the rails.

There is no derailing, nor erratic plunging of the truck as the machine slides off.

A very great improvement over the rigid tilting truck, and to be had only with Goodman Machine

160

Goodman Electric Shortwall Machine

A Continuous Cutter

Chain Guard Extended

A Continuous Cutting Machine for room and pillar work, and for work on long faces.

All movements and operations are made by the machine itself, under its own power.

This is of particular importance in low coal, where bars are not easily handled.

A front jack and stationary frame may hold and guide the machine in making its sumping cut into the coal, but usually the sumping is done without use of the front jack.

The stationary frame forms a perfect chain guard for the cutter arm at all times when not actually under the coal.

A pan shoe beneath the front jack supports the cutter arm off the floor while moving about the room.

As the cutter arm enters the coal the stationary frame (chain guard) telescopes back into the base of the machine.

The sumping cut is made at the right-hand side of the room, the feed and tail ropes led to anchors or jacks suitably set.

The sumping finished, the feed rope is led across

Goodman Electric Shortwall Machine

For Room and Pillar Work

In Cutting Position

the room to the left-hand wall, where the jack is again set.

The running cut across the face is then made, under perfect control, in one continuous operation.

A tilting device permits elevation or depression of the cutting, as conditions may require.

The machine is dragged back to its truck, loaded, moved to a new room, and there unloaded and set —all by its own power.

The machine is self-contained, without subsidiary parts for sumping or for supporting the cutter arm in moving.

The cutter arm is narrow; hence easily guided and not easily cramped under the coal.


Has compound wound motor, large parts, ample gearing, and is equipped for heavy duty service.

Workinged, but with large hand-holesded.

strical parts

Goodman Electric Shortwall Machine

On Self-Propelling Truck

163

Goodman Electric Shortwall Machine

Standard Type

For Alternating Current

Has a simple and powerful induction, motor, giving maximum starting torque, with minimum starting current.

The rotor contains no joints of any kind over which current passes, and it cannot be burned out.

The power truck on which it moves is equipped with a planetary drive, which enables the stopping of the truck while the motor is still running, and gradually starting again without any shock or strain to any of the propelling parts.

Equipped with a three-conductor cable for threephase circuits.

The machine, excepting the motor parts, is the same as the direct current shortwall machine shown on preceding pages.

164

Goodman Electric Longwall Machine

Plain or Reversible

Plain Longwall Machine

The most generally used longwall machine in this country.

Has all the desirable features for easy and positive control of the cutting.

The narrow cutter arm is easily tilted to permit cutting over or under obstructions, or to follow an uneven bottom.

Feed is powerful and positive, yet adjustable to suit varying conditions.

Motor is compound wound; armature lies lengthwise; gearing is large; all parts are heavy—the whole machine built for the severe and continuous duties always required in longwall work.

165

Goodman Electric Longwall Machine

Heavy Reversible Type

Arm in Position for Sumping In

Arm in Position for Running Cut

For use where conditions are unusually severe, requiring an extra heavy construction.

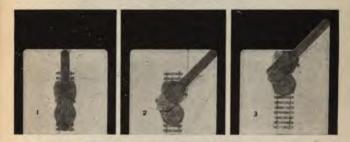
Built with either a direct-current compoundwound motor, or with an alternating-current induction motor.

After cutting in one direction, the cutter-arm can be swung around to the other side, permitting making a cut in the opposite direction.

Set for Low Cutting

This machine cuts a straight face, thus providing the best shooting conditions, obviating tight corners and giving the maximum coal output for a given depth of cut.

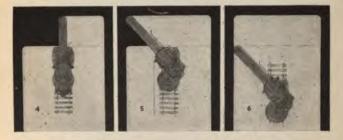
Also cuts a straight rib, thus keeping the rooms and entries in the best condition.


Particularly adaptable for cutting in or near a band of dirt whose removal is to be facilitated.

May be converted from a center cutter to a top cutter, or vice versa, by inverting the cutting element.

All motor parts and gearing are enclosed. Has attachment for boring anchor hole by power. Is equipped with a chain guard.

Goodman Overcutting Machines


Straightface Operation

1. The Machine arrives at the face in the room which is to be cut.

2. Ready to sump. Anchor set at the face and wire feed rope attached to it.

3. Sumping completed. Ready to start the straightface cut across the place.

4. Half way across on the straightface cut.

5. Straightface cut finished at the left side. Wire rope led back to a jack set behind the machine.

6. Square place cut completed by backing the machine along the track with the wire rope. Returning the cutter-arm to position 1, the machine is ready to travel to its next working place

Left Side of the Machine

For long face cutting, in either development or recovery work.

Improves the effectiveness of machine cutting by increasing the proportion of time during which actual cutting is done.

Swings its cutter arm to right or left at right angles to the track, for cutting faces of any lengths at either side.

Sumps into the coal by a simple swing from any position.

Useful in long-face advancement, in entry widening for track sidings, and in pillar drawing.

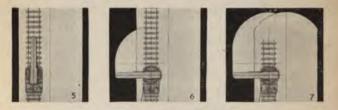
Self-propelling for rapid traveling.

Cuts from low to high center of seam, and becomes a top cutter by inversion of the cutting element in the side frames.

169

Goodman Overcutting Machines

Slabbing Operation


Driving Room or Entry

1. The machine at the face, ready to start cutting.

2. Sumped by straight advance on the track.

3. Circular face cut made by swing of the cutter arm.

4. Cut completed by backward movement of the machine along the track.

Slabbing A Long Face

5. Track laid at side of a room or along any face to be slabbed.

6. Slabbing cut as for entry widening—started by swinging sump of the cutter arm; continued by travel of the machine on the track.

7. Room development by slabbing off the pillar backward from the original room face. Similar method in pillar drawing.

170

Goodman Scraper Loader

For Loading Cars on the Entry

The Elements of the Complete Equipment

The Scraper Loader avoids necessity for laying track, taking top or placing cars in rooms.

It is particularly valuable in low coal or where bad pitches are encountered.

Useful also for face loading in room-and-pillar mines where long faces are worked. Also in longwall mines.

A complete outfit serves a panel of four or five rooms, from the time they reach a depth too great for shovel loading direct to cars on the entry, until they are fully driven up and the pillars drawn back.

The winding engine and the prop sheaves in the entry remain in fixed position until the work on this panel is completed, whereas the scraper is moved from room to room as the places are made ready to load out.

The outfit is operated by four or five men, the number depending on conditions. One man is stationed at the winding engine and one at the chute, who also trims the cars; the others are at the face.

Control is by bell signals.

The winding engine has tandem drums, with in-

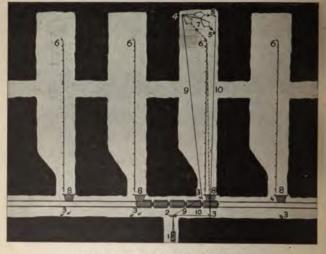
171

Tandem Drum Winding Engine

dependent clutches, permitting reversal of rope haul without reversal of motor.

Lead and tail ropes from the two drums pass between two pairs of center sheaves, giving fair lead to other sheaves from which the ropes enter the room to be loaded out.

Snatch blocks at the face—one at the left for the tail rope and two at the right for guiding the scraper in the loading—are held by jacks and are moved from room to room with the scraper.


Planks attached at lower ends of a fairly straight line of props serve to guide the scraper in its travel. A steel channel with rollers forms the face end of this guide-way and is moved up as the room advances.

A steel chute at the entry delivers the coal from scraper to car, and is swung out of the way when the scraper is in use elsewhere.

In mines where bottom is taken on the entry the scraper works along the room bottom to the loading chute. Where bottom is not taken on the entry, a

172

Goodman Scraper Loader Keeps Cars out of Rooms

Serving A Panel of Four Rooms

inclined trough of planks is built to enable the scraper to elevate the coal to loading height.

When a place is cleaned up, the tail rope is disconnected and, with both winding drum clutches engaged, the tail rope and the lead rope are wound in, pulling the scraper directly onto a mine car for transfer to the next ready place. The face snatch blocks being here reset, and the tail rope led around its block and back to the scraper, the operation of the loader may proceed.

Lead rope snatch blocks at the face are of open type, so the rope is easily thrown out when the scraper is loaded and in position for hauling out. These snatch blocks are set by jacks and can readily be moved about as the work requires. One setting for each is usually sufficient.

173

Goodman Scraper Loader

Two Methods of Operation

Where Bottom is Taken on the Entry

Where Bottom is Not Taken on the Entry (Top Taken Where Necessary)

1. Tandem drum electric winding engine.

2. Two pairs of center sheaves in a complete unit, attached by U-bolts to two wood props.

3. Room lead sheaves on brackets attached by U-bolts to props.

4. Tail rope face sheave (closed snatch block).

5. Two lead rope face sheaves (open snatch blocks).

6. Guide channel with rollers.

7. Scraper of plate steel, with chain for haul rope attachment.

8. Chute of steel, hung to swing out of the way when not in use.

9. Tail rope. 10. Lead rope.

3000 Pounds Drawbar Pull

Battery operation, while affording numerous advantages over trolley operation, also imposes several conditions which must be recognized in a successful storage battery locomotive.

Goodman Storage Battery Locomotives are completely and particularly designed for operation with storage batteries.

In no detail do they follow blindly any feature of trolley locomotive practice which is not also in strict conformity to the best application of storage battery power.

First and most important, they remove from the drivers the excess of weight (due to the heavy bat-

2000 Pounds Drawbar Pull

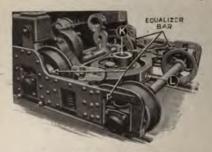
tery) over and above what is needed to give proper adhesion for tractive effort.

The Articulated type locomotive incorporates many advantageous features and is of highest standing for battery operation in mines.

It is designed by engineers of long experience in mine locomotive practice and has proved its fitness through several years of varied service.

It carries the battery between two bogy trucks, each of which has one pair of idle wheels and one pair of drivers.

The battery sets low, being placed no higher than is necessary for clearance of small idle wheels beneath it, thereby permitting operation under low roof and keeping the center of gravity low, for desirable stability.


The articulated construction permits, as does no other type, the use of batteries of ample capacity.

The battery gets no heat from the working parts, none of them being beneath it or close to it.

176

Goodman Storage Battery Locomotive

Articulated Type

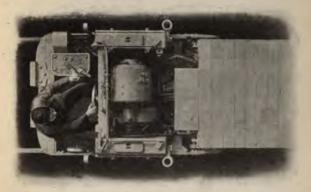
Equalizer Bars in the Truck

The Articulated locomotive will work around any mine track curve, by reason of the freedom afforded by the bogy trucks, each having short wheel base.

It will operate on the light rails usual in rooms and side entries, the weight being distributed over eight wheels instead of four.

It does not require excessive clearance for its cab corners at curves, the overhang of the bogy truck cabs being short.

It does not throw its draw pin far off track center on curves, hence does not tend to derail cars at the turns.


The Articulated locomotive will not destroy mine track at curves, because the forward bogy truck acts as a pilot in taking the curves easily, at highest desirable operative speed.

Ball bearings at the king pins add to the facility of operation at curves.

177

Goodman Storage Battery Locomotive

Articulated Type

Ample Cabs-Accessible Parts

A large cab at each end affords comfortable and safe accommodation for motorman and trip rider.

All parts are easily accessible, no running parts but the idle axles being beneath the battery box.

Only so much weight being on the drivers as is necessary for development of desired drawbar pull, the battery and electrical parts have wheel-slippage protection against overload injury.

Electrical parts may be enclosed for service in gaseous mines.

Equalizer bars in the trucks assure equality of wheel pressures on uneven track.

Longitudinal stiffness is provided, to prevent tilting of the trucks under the action of drawbar pull.

Transversely the trucks have ample freedom for following uneven track, rounding banked curves, etc.

Goodman Storage Battery Locomotive Articulated Type

Goodman Storage Battery Locomotives may be fitted for combination service, operating by trolley when traveling where overhead wiring is hung.

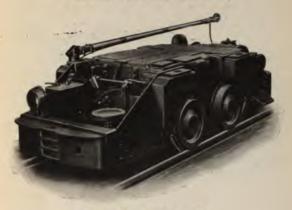
The motors have split field windings, giving two high-efficiency speeds of operation without the rheostat, and reduced resistance losses at other speeds.

Combination locomotives have two speeds on the battery and two higher speeds on the trolley, independent of the rheostat.

Goodman Storage Battery Locomotives are driven through gearing only, and all gears have teeth hardened by heat treatment.

Gears are encased and run in oil.

Single Truck Type


1000 Pounds Drawbar Pull

For light service a single-truck design is provided, as shown above, affording the same wheel-slippage protection of electrical parts, and all other important features of the Articulated type except those due to the bogy trucks.

178

Goodman Gathering Locomotive

For Large Cars, in Low Coal

With Electric Cable Reel

A highly successful gatherer for most exacting service in the more difficult of mining conditions.

Stands 30 inches above the rails to the top of its deck.

Trolley pole can be so attached that it may be depressed completely below the deck of the locomotive in operating under low roof.

Has flexible and short wheel base, to follow the mine track over uneven places and around sharp curves.

May be provided with electric cable reel for gathering use, driven either from the locomotive axle or by an independent motor.

Frame is of "unbreakable" composite construction—cast and rolled steel.

Spring bumpers and spring draft gear.

Controlling and breaking devices arranged to facilitate quick handling and rapid working.

180

Goodman Gathering Locomotive

For Small Cars and Low Roof

The "Electric Mule"

Designed as a small, compact gathering locomotive for effective work in light service.

Has short wheel base and small wheels, and will run wherever a mine car will go.

Has a single motor, geared flexibly to both axles.

Flexible axle support permits rapid operation over the rough and uneven track always found in rooms.

"Unbreakable" composite frame-steel plate sides and annealed cast steel ends.

Even with its short wheel base, the locomotive is positively non-teetering.

A very compact construction-100 inches long and 33 inches high. Three tons weight.

By variation of design a locomotive only 28 inches high may be supplied, in 2-ton or 2¹/₂-ton weight.

Fitted with one or two trolley poles and with gathering reel as required.

181

Goodman "Universal" Gathering Locomotive

Low Construction

Crab Reel Driven by Independent Motor

A gathering locomotive sometimes cannot go to the face, as in dip rooms, etc.

Provision of a wire rope and power-actuated winding drum enables the locomotive to remain on the entry and still reach the car at the face.

This feature, added to the usual electric cable reel, makes the locomotive truly a Universal Gatherer.

It may run the length of its electric cable away from the trolley wire and then reach the length of the wire rope to get a car.

The locomotive wheels may be locked by brakes to prevent movement while the rope is in use.

The wheels being outside, re-railing is very easy in case track conditions cause derailment.

Goodman "Universal" Gathering Locomotive High Coal Type

Crab Reel Driven from Locomotive Motor

"Universal" equipment includes both electric and wire rope reels, but these locomotives may be without the electric reels when required for crab service only.

The wire rope drum, or crab reel, may be driven mechanically by clutch connection to the locomotive power, as above, or be operated by an independent electric motor, as on preceding page.

It may be operated with the locomotive standing or running.

Various types of Goodman locomotives are fitted with this feature, which is of value in many ways esides room gathering.

Goodman Electric Gathering Reel

Mechanically or Motor Driven

A WALLAND AN WALLAN

WANT ON WANT ON WORK

The Goodman Gathering Reel is a perfected device for performance of a very difficult service.

183

It may be driven mechanically from

the locomotive itself or independently by a small motor provided for the purpose.

Conductor cable may be single or duplex, as conditions require.

Reels accommodate 300 to 500 feet of cable, single or duplex.

Cable is wound on in even layers by a simple spooling device.

184

Goodman Three-Motor Locomotive

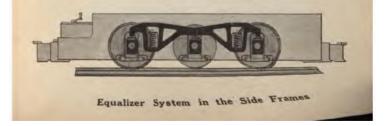
For Heavy Haulage

 t^{worh}_{theta} to the track may be two-motor locomotive the track may be two-theta lighter than is required for a two-motor locomotive. Three-motor construction is particularly advantageous for heavy haulage The weight is distributed over six wheels, so a given track will safely arty a three-motor locomotive 50 per cent heavier than could be used in See table of comparative rail weights required for two-motor and three-1 mil 20-Ton, with Motors Tandem Hung of long trips over long distances. Emm or locomotives, page 41.

185

Goodman Three-Motor Locomotive

Equalized Wheel Pressure



Side Frames of Box Construction

General details of design and construction are in conformity to the standards for two-motor types, as described at length on following pages.

Heavy side frames are of box form, each frame enclosing the equalizer system by which the locomotive weight, hung at four points, is distributed evenly to the six wheels, per diagram below.

Equality of wheel pressures assures utmost effectiveness in development of drawbar pull.

186

Goodman Two-Motor Locomotive

Outside Steel Frame

20-Ton, with Motors Centrally Hung

Goodman Two-Motor Locomotives have numerous features of superiority over others of similar type, both mechanically and electrically.

Frames are made with steel side plates, with cast steel ends of box type, by which construction the greatest possible frame rigidity is obtained.

The ends are built with spring bumpers and spring draft rigging.

Motors of high power are used, with fittings to correspond, to assure that the electrical equipment shall be no less strong and durable than the mechanical construction.

Excess of strength in the electrical parts provides the desirable margin of endurance not only for

187

Goodman Two-Motor Locomotive

Outside Steel Frame

15-Ton, with Long Wheel Base

momentary overloads, but also for continuous working at highest capacity.

Motors, with their bearings and gears, are made always ample, large dimensions being secured by closeness of arrangement and care in design.

Motor shells are provided with special covers for permitting access to commutators and brush holders, from above.

Motors are so hung, and their shells so divided, that the armatures—or the entire motors if desired may be removed from above.

The controller is constructed for series and parallel running, and is of rugged construction, well enclosed.

Wheels may have chilled treads or steel tires, the latter giving about 25 percent better adhesion.

188

Goodman Two-Motor Locomotive

Inside Steel Frame

13-Ton, with Long Wheel Base

The inside frame locomotive, being no wider than the wheels, will operate in narrow entries.

Brakes are accessible for adjustment or for renewal of shoes.

Goodman "unbreakable" composite frame construction is here particularly adaptable.

Side frames of rolled steel, with cab and bumper ends of annealed cast steel.

Steel ends withstand all usual shocks of mine service, and are readily replaced when broken by erious accident.

189

Goodman Two-Motor Locomotive

Outside Steel Frame

10-Ton, with Long Wheel Base

Built in a wide range of weights, and with various equipment.

Any of the two-motor types may have spring bumpers, the springs acting both in pushing and in pulling.

Motors may be hung in tandem, one between the axles and one outside, or be hung inside, both between the axles.

Tandem hung motors give the short wheel base necessary for sharp curves.

Inside hung motors give the longer wheel base

190

Goodman Two-Motor Locomotive

Outside Steel Frame

8-Ton, with Short Wheel Base

permissible on curves of fair radius, and desirable for long runs.

A single reduction gear drive is used at each axle, the motor pinion meshing directly with the axle gear.

Brakes are very powerful, positive and quick, giving close control.

Trolley pole may be set low, and no part need project above the deck level.

Removal of covers forming the top of the locomotive exposes all parts.

191

Goodman Two-Motor Gatherer

For Low Coal Work

6-Ton, Inside Steel Frame

Sand boxes are placed high in the frame, giving good head for delivery of sand to the rails close to the wheels.

The locomotive shown on this page is especially adapted for mine development, wherein the locomotive does main haulage work as well as gathering.

Has quick-acting brakes, as needed in switching and gathering.

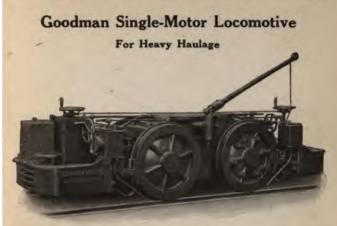
May be fitted with power-driven drum for wire rope reel, when its work will include gathering from dip rooms.

Provision of two trolley pole sockets is often a feature of convenience and value.

With Covered Cab for Outdoor Work

A two-motor locomotive of high power, for very narrow gauges. Built in weights of 10 to 15 tons.

Similar to the Goodman Single-Motor type in several important features of design.


Has the unit drive for all four wheels—giving a maximum of hauling capacity.

Has the flexible axle support, so necessary for operation on uneven tracks.

A thoroughly satisfactory narrow gauge locomotive for industrial service.

The same locomotive, without cab, is built for mine use on narrow gauge tracks.

193

10-Ton, Double-End Control

The maximum possible pulling power per ton of weight in a traction locomotive.

A patented design, made exclusively by the Goodman Manufacturing Co.

Has a single armature, geared to both axles.

Hence all four wheels are constrained to act always in unison—a unit of tractive effort.

In this feature of unit drive lie many items of time saving in haulage work.

No wheel can slip until they all slip, and all four wheels revolve always at the same speed.

A heavier load may therefore be started, without slippage, than when the two axles are free to act independently.

The motorman may start his trip and get up to running speed in shortest possible time, because the

194

Goodman Single-Motor Locomotive A Unit of Pulling Power

71/2-Ton, Single-End Control

rapidity with which he can turn on current is determined by the adhesion of four wheels instead of only two.

Perfect flexibility of operation is secured by application of the three-point principle of support in the construction and mounting of the frame.

The weight of the locomotive being equally divided between the two axles, one-fourth of the total weight is borne always by each wheel.

And that means equality of pressures, regardless of irregularities of track surface.

And this in turn insures constancy of adhesion for pulling, regardless of track irregularities.

Constant equality of wheel pressures also minimizes the severity of the service on the track itself.

The flexible truck reduces liability to derailment

195

Goodman Single-Motor Locomotive

For Entry Gathering

6-Ton, with Gathering Reel

enabling the wheels to follow more surely a poorly laid track.

Also a higher speed may safely be maintained over bad spots in the track.

All working parts are made readily accessible, from above, by lifting off the top magnet.

No pit is required in the shop, as there is no underneath work to be done.

No heavy parts overhang the axles, so the weight is concentrated mainly within the wheel base.

Wheels and brakes are outside, facilitating adjustment and renewal of brake shoes.

Wheels may have chilled treads or be fitted with steel tires.

The one motor, lengthwise of the locomotive, has ample room for generous proportions in all parts.

196

Goodman Single-Motor Locomotive

For Light Haulage

5-Ton, Double-End Control

Wholly within the wheels, this locomotive may be operated in the narrowest of entries.

It lends itself readily to arrangement for doubleend control, so desirable in many situations.

Central frame is a single casting of great strength and rigidity.

Cabs are annealed cast steel, bolted on and hence readily renewable, though not easily broken.

Driving gears are bolted directly to the wheels, relieving the axles of needless bending stresses.

Brakes are direct, positive and quick, enabling close control at all times.

Sand boxes are placed high, giving good head for flow of sand to the rails.

197

A "Safety-First" Locomotive, with Guarded Wheels

The Goodman Single-Motor Type has proved itself particularly adapted to haulage work in metal mines.

Its design permits perfectly practical construction of a locomotive of large horsepower for narrow gauge tracks.

The standard design, with a few special features, meets all the peculiar requirements of this work.

The flexibility of axle support in the single-motor design is of usual value in metal mining work.

Unit driving for all four wheels affords here also the maximum of hauling power for a given weight.

Double-end control is of special value, as the locomotive in many mines is reversed at the shaft "station."

100 Hp. Combination Rack Locomotive

The Goodman Rack Rail Haulage is the only practical Rack Locomotive system ever built for mine service.

Plain Rack System for operation by rack rail only—advisable where grades prevail.

Combination System for mines where the roadways are generally level, or nearly so, and where grades are only local or not predominant, permitting operation by traction on the level stretches and by rack on the grades, where the rack rail is laid.

A single motor of ample proportions, geared to both driving axles for traction running, or to both driving sprockets (see next page) for rack operation.

199

Goodman Rack Rail Haulage

For Heavy Grades

Driving Arrangement for Combination Traction and Rack Operation

By shifting a clutch the motor power may be transmitted to the axle and track wheels for traction operation.

Standard Rack Rail Track

The rack rail is made up of flat steel bars, perforated accurately to receive the teeth of the driving sprockets, and joined end to end by bolted fish plates.

The rack rail is supported rigidly above a stringer on the ties by carefully formed clamp chairs.

INDEX

.

Also De las Desistant de Maria	60
Air, Power Required to Move	62
Compressed	
Humidifying	
Aluminum Wires and Cables	
Angles, Steel, Weights of	98
Areas of Circles12	
of Wires and Cables	-
of Pipes, Tanks, Etc	
Bars, Iron, Weights of	99
Battery Locomotives1	
Beams, Wood, Calculations for16	04-105
Belting, Horsepower of	90 - 91
Board Measure	106
Boiling Temperatures	107
Bonding, Rail	17- 19
Bonds, Income and Yield1	38-141
Liberty1	40-141
Breast Mining Machines1	54-159
Cables, Aluminum and Copper	6-13
Circles, Circumferences and Areas1	
Cisterns, Capacities of	75
Coal, Seams, Contents of	
Fields, of the United States	
Loading Equipment1	
Mining Machines1	54-169
Coke Production in the United States	113
Compressed Air Pressures	70
Concrete Mixtures	103
Copper Statistics1	16-118
Wires and Cables	5-16
Cubes and Cube Roots12	
Curves, Track	
Decimals and Common Fractions	
of Feet and Inches	
Depreciation Table	136

INDEX—Continued

Diameters and Speeds	oo oo
Diametral and Circular Pitches	95
Discount Table	137
Drawbar Pull of Locomotives	137
Elevation of Outer Rail at Curves	29 42
Equivalents, Decimals—Fractions	42
Feet, Inches (Decimals)	123
Kilowatts—Horsepower	25
Mechanical—Electrical	25 26
Metric—English	20 27
Pounds Pressure—Feet Head (Water)	27 79
Fans, Power to Drive	62
Frogs and Switches	
Fusible Metals, Melting Temperatures	107
Fusing Currents for Wires	15
Temperatures, Various Materials	107
Gathering Locomotives	
Reels	183
Gauges, Wire, Comparison of	9
Gears, Diameters and Speeds	
Horsepower of	
Pitches	95
Grades, Haulage on	
Percentages and Degrees	40
Haulage, Mine	
Storage Battery	
on Heavy Grades	
Hoisting, Mine	
Horsepower and Kilowatts	25
of Belting	
of Gears	
of Locomotives	30
of Shafting	92- 94
to Move Air	62
to Raise Water	84
Humidity of Mine Air	. 63- 69 \
Interest Tables, 5% to 8%	132-135
····, ··· ·· ·····	

INDEX—Continued

Iron Mine Locomotives 197
Mining Statistics119-121
Kilowatts and Horsepower
Loader, Scraper, for Coal
Locomotives, Drawbar Pull and Tractive
Effort 28-29
Gathering
Haulage
Hauling Capacities 32- 35
Horsepower and Weight 30
Rack Rail198-199
Rail Weights and Curvatures
Storage Battery
Longwall Mining Machines164-165
Maps, Parcel Post145-147
Melting Temperatures 107
Metal Mine Locomotives 197
Metric Equivalents 27
Mine Haulage 28- 39
Hoisting 54- 61
Humidifying 63- 69
Mining Machines in Coal Production 114
Breast Types
Longwall164-165
Overcutting
Shortwall159-163
Mining Statistics, Coal and Coke
Copper and Iron
Motors, Current Required for
Overcutting Machines, Coal166-169
Parcel Post Rates and Maps143-147
Pipes, Areas and Capacities
Pressure Losses in 80-82
Wrought Iron 72-74
Pitches of Gears
Plates, Iron and Steel, Weights of100-101
Population in the United States

INDEX_Continued

Postal Rates and Classifications142-147
Posts and Beams, Wood104-105
Power Transmission, Mechanical
Pulleys, Diameters and Speeds 88-89
Pumps, Capacities, Single Acting
Duplex Steam 85- 87
Power Required 84
Rack Rail Haulage
Rails, Bonding 17-19
Curvature 43- 44
Elevation at Curves 42
Frogs and Switches 45-51
Sections and Drillings 52
Splices, Bolts and Spikes 53
Weights for Locomotives 41
Resistance of Wires and Cables5-6, 14
Scraper Loader for Coal
Shafting, Horsepower of 92-94
Shortwall Mining Machines159-163
Speeds and Diameters
Sprockets, Diameters and Speeds
Squares, Cubes and Roots124-129
Steam, Properties of
Stocks, Income from 138
Storage Battery Haulage 36-39
Locomotives
Switches and Frogs 45- 51
Tanks, Capacities of
Temperatures, Boiling and Melting 107
Three-Motor Locomotives
Timber Posts and Beams104-105
Track, Curvature of Rails 43- 44
Frogs and Switches 45- 51
Rail Elevation at Curves
Rail Sections and Drilling
Rail Splices, Bolts and Spikes
Rail Weights for Locomotives

-1


INDEX—Continued

Tractive Effort of Locomotives
Transmission Lines 22-23
Two-Motor Locomotives
Universal Gathering Locomotives
War Chronology
Water, Horsepower for Raising
in Moist Air 69
Pressure Losses in Pipes and Elbows 80-82
Pressures—Heads
Weir Measurement 78
Weights, Metric and English
of Iron and Steel Bars, Plates and
Shapes 98-101
of Pipe 72-74
of Rails for Locomotives 41
of Track 52
of Various Materials 102
of Wires and Cables6-7, 10-13
Wires, Comparison of Gauges
Current Carrying Capacity 14
Fusing Currents 15
Insulated, Diameter and Weight 10-13
Resistance, Copper and Aluminum5-6, 14
Sizes for D. C. and A. C 20-23
Strength
Transmission Lines 22-23
Volts Drop with Various Combinations 16
Weights, Bare and Insulated6-7, 10-13
Wiring Sizes for D. C. and A. C 20- 21
Transmission Line Calculations 22-23
Wood Posts and Beams104-105
e e
i ³)

